Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Mar;39(3):620–625. doi: 10.1128/AAC.39.3.620

Comparative complement selection in bacteria enables screening for lead compounds targeted to a purine salvage enzyme of parasites.

A E Eakin 1, R Nieves-Alicea 1, R Tosado-Acevedo 1, M S Chin 1, C C Wang 1, S P Craig 3rd 1
PMCID: PMC162594  PMID: 7793862

Abstract

Expression plasmids encoding the hypoxanthine phosphoribosyltransferases (HPRTs) of Plasmodium falciparum, Schistosoma mansoni, Tritrichomonas foetus, and Homo sapiens were subcloned into genetically deficient Escherichia coli that requires complementation by the activity of a recombinant HPRT for growth on semidefined medium. Fifty-nine purine analogs were screened for their abilities to inhibit the growth of these bacteria. Several compounds that selectively altered the growth of the bacteria complemented by the malarial, schistosomal, or tritrichomonal HPRT compared with the growth of bacteria expressing the human enzyme were identified. These results demonstrate that the recombinant approach to screening compounds by complement selection in a comparative manner provides a rapid and efficient method for the identification of new lead compounds selectively targeted to the purine salvage enzymes of parasites.

Full Text

The Full Text of this article is available as a PDF (328.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appelt K., Bacquet R. J., Bartlett C. A., Booth C. L., Freer S. T., Fuhry M. A., Gehring M. R., Herrmann S. M., Howland E. F., Janson C. A. Design of enzyme inhibitors using iterative protein crystallographic analysis. J Med Chem. 1991 Jul;34(7):1925–1934. doi: 10.1021/jm00111a001. [DOI] [PubMed] [Google Scholar]
  2. Berens R. L., Marr J. J., LaFon S. W., Nelson D. J. Purine metabolism in Trypanosoma cruzi. Mol Biochem Parasitol. 1981 Jul;3(3):187–196. doi: 10.1016/0166-6851(81)90049-9. [DOI] [PubMed] [Google Scholar]
  3. Chin M. S., Wang C. C. Isolation, sequencing and expression of the gene encoding hypoxanthine-guanine-xanthine phosphoribosyltransferase of Tritrichomonas foetus. Mol Biochem Parasitol. 1994 Feb;63(2):221–229. doi: 10.1016/0166-6851(94)90058-2. [DOI] [PubMed] [Google Scholar]
  4. Craig S. P., 3rd, McKerrow J. H., Newport G. R., Wang C. C. Analysis of cDNA encoding the hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) of Schistosoma mansoni; a putative target for chemotherapy. Nucleic Acids Res. 1988 Jul 25;16(14B):7087–7101. doi: 10.1093/nar/16.14.7087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Craig S. P., 3rd, Yuan L., Kuntz D. A., McKerrow J. H., Wang C. C. High level expression in Escherichia coli of soluble, enzymatically active schistosomal hypoxanthine/guanine phosphoribosyltransferase and trypanosomal ornithine decarboxylase. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2500–2504. doi: 10.1073/pnas.88.6.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eads J. C., Scapin G., Xu Y., Grubmeyer C., Sacchettini J. C. The crystal structure of human hypoxanthine-guanine phosphoribosyltransferase with bound GMP. Cell. 1994 Jul 29;78(2):325–334. doi: 10.1016/0092-8674(94)90301-8. [DOI] [PubMed] [Google Scholar]
  7. Jochimsen B., Nygaard P., Vestergaard T. Location on the chromosome of Escherichia coli of genes governing purine metabolism. Adenosine deaminase (add), guanosine kinase (gsk) and hypoxanthine phosphoribosyltransferase (hpt). Mol Gen Genet. 1975 Dec 30;143(1):85–91. doi: 10.1007/BF00269424. [DOI] [PubMed] [Google Scholar]
  8. Jolly D. J., Okayama H., Berg P., Esty A. C., Filpula D., Bohlen P., Johnson G. G., Shively J. E., Hunkapillar T., Friedmann T. Isolation and characterization of a full-length expressible cDNA for human hypoxanthine phosphoribosyl transferase. Proc Natl Acad Sci U S A. 1983 Jan;80(2):477–481. doi: 10.1073/pnas.80.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kelley W. N., Greene M. L., Rosenbloom F. M., Henderson J. F., Seegmiller J. E. Hypoxanthine-guanine phosphoribosyltransferase deficiency in gout. Ann Intern Med. 1969 Jan;70(1):155–206. doi: 10.7326/0003-4819-70-1-155. [DOI] [PubMed] [Google Scholar]
  10. King A., Melton D. W. Characterisation of cDNA clones for hypoxanthine-guanine phosphoribosyltransferase from the human malarial parasite, Plasmodium falciparum: comparisons to the mammalian gene and protein. Nucleic Acids Res. 1987 Dec 23;15(24):10469–10481. doi: 10.1093/nar/15.24.10469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krenitsky T. A., Papaioannou R., Elion G. B. Human hypoxanthine phosphoribosyltransferase. I. Purification, properties, and specificity. J Biol Chem. 1969 Mar 10;244(5):1263–1270. [PubMed] [Google Scholar]
  12. Marr J. J., Berens R. L., Nelson D. J. Purine metabolism in Leishmania donovani and Leishmania braziliensis. Biochim Biophys Acta. 1978 Dec 1;544(2):360–371. doi: 10.1016/0304-4165(78)90104-6. [DOI] [PubMed] [Google Scholar]
  13. Olsen A. S., Milman G. Human hypoxanthine phosphoribosyltransferase. Purification and properties. Biochemistry. 1977 May 31;16(11):2501–2505. doi: 10.1021/bi00630a029. [DOI] [PubMed] [Google Scholar]
  14. Queen S. A., Jagt D. L., Reyes P. In vitro susceptibilities of Plasmodium falciparum to compounds which inhibit nucleotide metabolism. Antimicrob Agents Chemother. 1990 Jul;34(7):1393–1398. doi: 10.1128/aac.34.7.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Queen S. A., Vander Jagt D., Reyes P. Properties and substrate specificity of a purine phosphoribosyltransferase from the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol. 1988 Aug;30(2):123–133. doi: 10.1016/0166-6851(88)90105-3. [DOI] [PubMed] [Google Scholar]
  16. Schimandle C. M., Mole L. A., Sherman I. W. Purification of hypoxanthine-guanine phosphoribosyltransferase of Plasmodium lophurae. Mol Biochem Parasitol. 1987 Feb;23(1):39–45. doi: 10.1016/0166-6851(87)90185-x. [DOI] [PubMed] [Google Scholar]
  17. Senft A. W., Crabtree G. W. Purine metabolism in the schistosomes: potential targets for chemotherapy. Pharmacol Ther. 1983;20(3):341–356. doi: 10.1016/0163-7258(83)90031-1. [DOI] [PubMed] [Google Scholar]
  18. Shahabuddin M., Scaife J. The gene for hypoxanthine phosphoribosyl transferase of Plasmodium falciparum complements a bacterial HPT mutation. Mol Biochem Parasitol. 1990 Jun;41(2):281–288. doi: 10.1016/0166-6851(90)90191-n. [DOI] [PubMed] [Google Scholar]
  19. Sherman I. W. Biochemistry of Plasmodium (malarial parasites). Microbiol Rev. 1979 Dec;43(4):453–495. doi: 10.1128/mr.43.4.453-495.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Walsh C. J., Sherman I. W. Purine and pyrimidine synthesis by the avian malaria parasite, Plasmodium lophurae. J Protozool. 1968 Nov;15(4):763–770. doi: 10.1111/j.1550-7408.1968.tb02209.x. [DOI] [PubMed] [Google Scholar]
  21. Wang C. C., Aldritt S. Purine salvage networks in Giardia lamblia. J Exp Med. 1983 Nov 1;158(5):1703–1712. doi: 10.1084/jem.158.5.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wang C. C., Verham R., Rice A., Tzeng S. Purine salvage by Tritrichomonas foetus. Mol Biochem Parasitol. 1983 Aug;8(4):325–337. doi: 10.1016/0166-6851(83)90079-8. [DOI] [PubMed] [Google Scholar]
  23. Wilson J. M., Tarr G. E., Mahoney W. C., Kelley W. N. Human hypoxanthine-guanine phosphoribosyltransferase. Complete amino acid sequence of the erythrocyte enzyme. J Biol Chem. 1982 Sep 25;257(18):10978–10985. [PubMed] [Google Scholar]
  24. Yuan L., Craig S. P., McKerrow J. H., Wang C. C. The hypoxanthine-guanine phosphoribosyltransferase of Schistosoma mansoni. Further characterization and gene expression in Escherichia coli. J Biol Chem. 1990 Aug 15;265(23):13528–13532. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES