Abstract
Thirty patients with severe bacterial infections were treated with 50 mg of cefodizime per kg of body weight once daily or 50 mg of ceftriaxone per kg once daily for 10 +/- 3 days. The effect of cefodizime and ceftriaxone on the phagocytic capacity and generation of reactive oxygen intermediates after phagocytosis by granulocytes was assessed prior to, during, and after therapy. Flow cytometry was used to study phagocytic capacity by measuring the uptake of fluorescein-labeled bacteria. The generation of reactive oxygen intermediates after phagocytosis was estimated by the quantification of the intracellular conversion of dihydrorhodamine 123 to rhodamine 123. Prior to therapy, patients in both groups exhibited a decreased capacity to phagocytize Escherichia coli and subsequently to generate reactive oxygen intermediates. Granulocyte function increased after the initiation of therapy and normalized within 7 days for the ceftriaxone-treated patients and within 3 days for the cefodizime group (P < 0.05). In the cefodizime group, an enhancement of phagocytic capacity was observed 14 days after the initiation of therapy (P < 0.05). Prior to therapy, phagocytic capacity was significantly correlated with the generation of reactive oxygen products (r = 0.674 and P < 0.005).
Full Text
The Full Text of this article is available as a PDF (209.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bass D. A., Parce J. W., Dechatelet L. R., Szejda P., Seeds M. C., Thomas M. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol. 1983 Apr;130(4):1910–1917. [PubMed] [Google Scholar]
- Bassøe C. F. Flow cytometric studies on phagocyte function in bacterial infections. Acta Pathol Microbiol Immunol Scand C. 1984 Jun;92(3):167–171. doi: 10.1111/j.1699-0463.1984.tb00069.x. [DOI] [PubMed] [Google Scholar]
- Bassøe C. F., Laerum O. D., Solberg C. O., Haneberg B. Phagocytosis of bacteria by human leukocytes measured by flow cytometry. Proc Soc Exp Biol Med. 1983 Nov;174(2):182–186. doi: 10.3181/00379727-174-41722. [DOI] [PubMed] [Google Scholar]
- Bassøe C. F., Solberg C. O. Phagocytosis of Staphylococcus aureus by human leukocytes: quantitation by a flow cytometric and a microbiological method. Acta Pathol Microbiol Immunol Scand C. 1984 Feb;92(1):43–50. doi: 10.1111/j.1699-0463.1984.tb00050.x. [DOI] [PubMed] [Google Scholar]
- Bjerknes R., Bassøe C. F. Human leukocyte phagocytosis of zymosan particles measured by flow cytometry. Acta Pathol Microbiol Immunol Scand C. 1983 Oct;91(5):341–348. [PubMed] [Google Scholar]
- Böhmer R. H., Trinkle L. S., Staneck J. L. Dose effects of LPS on neutrophils in a whole blood flow cytometric assay of phagocytosis and oxidative burst. Cytometry. 1992;13(5):525–531. doi: 10.1002/cyto.990130512. [DOI] [PubMed] [Google Scholar]
- Cantinieaux B., Hariga C., Courtoy P., Hupin J., Fondu P. Staphylococcus aureus phagocytosis. A new cytofluorometric method using FITC and paraformaldehyde. J Immunol Methods. 1989 Jul 26;121(2):203–208. doi: 10.1016/0022-1759(89)90161-0. [DOI] [PubMed] [Google Scholar]
- Dammacco F., Halberg F., Carandente F. Antimicrobial agents as biological response modifiers (BRM) and chrono-immunomodulation: an emerging relationship. Chronobiologia. 1988 Jan-Jun;15(1-2):25–39. [PubMed] [Google Scholar]
- Duignan J. P., Collins P. B., Johnson A. H., Bouchier-Hayes D. The association of impaired neutrophil chemotaxis with postoperative surgical sepsis. Br J Surg. 1986 Mar;73(3):238–240. doi: 10.1002/bjs.1800730328. [DOI] [PubMed] [Google Scholar]
- Dunn P. A., Tyrer H. W. Quantitation of neutrophil phagocytosis, using fluorescent latex beads. Correlation of microscopy and flow cytometry. J Lab Clin Med. 1981 Sep;98(3):374–381. [PubMed] [Google Scholar]
- Forsgren A., Schmeling D., Quie P. G. Effect of tetracycline on the phagocytic function of human leukocytes. J Infect Dis. 1974 Oct;130(4):412–415. doi: 10.1093/infdis/130.4.412. [DOI] [PubMed] [Google Scholar]
- Gemmell C. G. Potentiation of phagocytosis of pathogenic bacteria by exposure to low concentrations of antibiotics. J Antimicrob Chemother. 1984 May;13(5):407–409. doi: 10.1093/jac/13.5.407. [DOI] [PubMed] [Google Scholar]
- Gialdroni Grassi G., Fietta A., Sacchi F., Derose V. Influence of ceftriaxone on natural defense systems. Am J Med. 1984 Oct 19;77(4C):37–41. [PubMed] [Google Scholar]
- Gnarpe H., Belsheim J. Direct and indirect effects of antibiotics on granulocyte activity. J Antimicrob Chemother. 1981 Nov;8 (Suppl 100):71–78. doi: 10.1093/jac/8.suppl_c.71. [DOI] [PubMed] [Google Scholar]
- Labro M. T., Amit N., Babin-Chevaye C., Hakim J. Cefodizime (HR 221) potentiation of human neutrophil oxygen-independent bactericidal activity. J Antimicrob Chemother. 1987 Mar;19(3):331–341. doi: 10.1093/jac/19.3.331. [DOI] [PubMed] [Google Scholar]
- Labro M. T. Cefodizime as a biological response modifier: a review of its in-vivo, ex-vivo and in-vitro immunomodulatory properties. J Antimicrob Chemother. 1990 Nov;26 (Suppl 100):37–47. doi: 10.1093/jac/26.suppl_c.37. [DOI] [PubMed] [Google Scholar]
- Labro M. T. Immunomodulation by antibacterial agents. Is it clinically relevant? Drugs. 1993 Mar;45(3):319–328. doi: 10.2165/00003495-199345030-00001. [DOI] [PubMed] [Google Scholar]
- Labro M. T., el Benna J. Comparison of cefodizime with various cephalosporins for their indirect effect on the human neutrophil oxidative burst in vitro. J Antimicrob Chemother. 1990 Nov;26 (Suppl 100):49–57. doi: 10.1093/jac/26.suppl_c.49. [DOI] [PubMed] [Google Scholar]
- Labro M. T., el Benna J. Effects of anti-infectious agents on polymorphonuclear neutrophils. Eur J Clin Microbiol Infect Dis. 1991 Feb;10(2):124–131. doi: 10.1007/BF01964424. [DOI] [PubMed] [Google Scholar]
- Larson S. E., DaMert G. J., Collins-Lech C., Sohnle P. G. Direct stimulation of lymphokine production by cephalothin. J Infect Dis. 1980 Aug;142(2):265–272. doi: 10.1093/infdis/142.2.265. [DOI] [PubMed] [Google Scholar]
- Limbert M., Bartlett R. R., Dickneite G., Klesel N., Schorlemmer H. U., Seibert G., Winkler I., Schrinner E. Cefodizime, an aminothiazolyl cephalosporin. IV. Influence on the immune system. J Antibiot (Tokyo) 1984 Dec;37(12):1719–1726. doi: 10.7164/antibiotics.37.1719. [DOI] [PubMed] [Google Scholar]
- Mayer P., Schütze E., Lam C., Kricek F., Liehl E. Recombinant murine granulocyte-macrophage colony-stimulating factor augments neutrophil recovery and enhances resistance to infections in myelosuppressed mice. J Infect Dis. 1991 Mar;163(3):584–590. doi: 10.1093/infdis/163.3.584. [DOI] [PubMed] [Google Scholar]
- Milatovic D. Antibiotics and phagocytosis. Eur J Clin Microbiol. 1983 Oct;2(5):414–425. doi: 10.1007/BF02013898. [DOI] [PubMed] [Google Scholar]
- Muirhead K. A. Establishment of quality control procedures in clinical flow cytometry. Ann N Y Acad Sci. 1993 Mar 20;677:1–20. doi: 10.1111/j.1749-6632.1993.tb38758.x. [DOI] [PubMed] [Google Scholar]
- Nielsen H. Antibiotics and human monocyte function. II. Phagocytosis and oxidative metabolism. APMIS. 1989 May;97(5):447–451. doi: 10.1111/j.1699-0463.1989.tb00814.x. [DOI] [PubMed] [Google Scholar]
- Oleske J. M. Effects of antimicrobials on host defence mechanism. J Antimicrob Chemother. 1984 May;13(5):413–415. doi: 10.1093/jac/13.5.413. [DOI] [PubMed] [Google Scholar]
- Pacheco Y., Hosni R., Dagrosa E. E., Gormand F., Guibert B., Chabannes B., Lagarde M., Perrin-Fayolle M. Antibiotics and production of granulocyte-macrophage colony-stimulating factor by human bronchial epithelial cells in vitro. A comparison of cefodizime and ceftriaxone. Arzneimittelforschung. 1994 Apr;44(4):559–563. [PubMed] [Google Scholar]
- Perticarari S., Presani G., Mangiarotti M. A., Banfi E. Simultaneous flow cytometric method to measure phagocytosis and oxidative products by neutrophils. Cytometry. 1991;12(7):687–693. doi: 10.1002/cyto.990120713. [DOI] [PubMed] [Google Scholar]
- Regel G., Nerlich M. L., Dwenger A., Seidel J., Schmidt C., Sturm J. A. Phagocytic function of polymorphonuclear leukocytes and the RES in endotoxemia. J Surg Res. 1987 Jan;42(1):74–84. doi: 10.1016/0022-4804(87)90068-0. [DOI] [PubMed] [Google Scholar]
- Roesler J., Hecht M., Freihorst J., Lohmann-Matthes M. L., Emmendörffer A. Diagnosis of chronic granulomatous disease and of its mode of inheritance by dihydrorhodamine 123 and flow microcytofluorometry. Eur J Pediatr. 1991 Jan;150(3):161–165. doi: 10.1007/BF01963557. [DOI] [PubMed] [Google Scholar]
- Roilides E., Walsh T. J., Pizzo P. A., Rubin M. Granulocyte colony-stimulating factor enhances the phagocytic and bactericidal activity of normal and defective human neutrophils. J Infect Dis. 1991 Mar;163(3):579–583. doi: 10.1093/infdis/163.3.579. [DOI] [PubMed] [Google Scholar]
- Rothe G., Oser A., Valet G. Dihydrorhodamine 123: a new flow cytometric indicator for respiratory burst activity in neutrophil granulocytes. Naturwissenschaften. 1988 Jul;75(7):354–355. doi: 10.1007/BF00368326. [DOI] [PubMed] [Google Scholar]
- Scheffer J., Knöller J., Cullmann W., König W. Effects of cefaclor, cefetamet and Ro 40-6890 on inflammatory responses of human granulocytes. J Antimicrob Chemother. 1992 Jul;30(1):57–66. doi: 10.1093/jac/30.1.57. [DOI] [PubMed] [Google Scholar]
- Simms H. H., D'Amico R. Polymorphonuclear leukocyte dysregulation during the systemic inflammatory response syndrome. Blood. 1994 Mar 1;83(5):1398–1407. [PubMed] [Google Scholar]
- Szejda P., Parce J. W., Seeds M. S., Bass D. A. Flow cytometric quantitation of oxidative product formation by polymorphonuclear leukocytes during phagocytosis. J Immunol. 1984 Dec;133(6):3303–3307. [PubMed] [Google Scholar]
- Trinkle L. S., Wellhausen S. R., McLeish K. R. A simultaneous flow cytometric measurement of neutrophil phagocytosis and oxidative burst in whole blood. Diagn Clin Immunol. 1987;5(2):62–68. [PubMed] [Google Scholar]
- Vanholder R., Dagrosa E. E., Van Landschoot N., Waterloos M. A., Ringoir S. M. Antibiotics and energy delivery to the phagocytosis-associated respiratory burst in chronic hemodialysis patients: a comparison of cefodizime and cotrimoxazole. Nephron. 1993;63(1):65–72. doi: 10.1159/000187145. [DOI] [PubMed] [Google Scholar]
- Venezio F. R., Westenfelder G. O., Phair J. P. The adherence of polymorphonuclear leukocytes in patients with sepsis. J Infect Dis. 1982 Mar;145(3):351–357. doi: 10.1093/infdis/145.3.351. [DOI] [PubMed] [Google Scholar]
- Vespasiano M. C., Lewandoski J. R., Zimmerman J. J. Longitudinal analysis of neutrophil superoxide anion generation in patients with septic shock. Crit Care Med. 1993 May;21(5):666–672. doi: 10.1097/00003246-199305000-00008. [DOI] [PubMed] [Google Scholar]
- Weiss S. J. Tissue destruction by neutrophils. N Engl J Med. 1989 Feb 9;320(6):365–376. doi: 10.1056/NEJM198902093200606. [DOI] [PubMed] [Google Scholar]
- Zimmerman J. J., Millard J. R., Farrin-Rusk C. Septic plasma suppresses superoxide anion synthesis by normal homologous polymorphonuclear leukocytes. Crit Care Med. 1989 Dec;17(12):1241–1246. doi: 10.1097/00003246-198912000-00001. [DOI] [PubMed] [Google Scholar]
- Zimmerman J. J., Shelhamer J. H., Parrillo J. E. Quantitative analysis of polymorphonuclear leukocyte superoxide anion generation in critically ill children. Crit Care Med. 1985 Mar;13(3):143–150. doi: 10.1097/00003246-198503000-00001. [DOI] [PubMed] [Google Scholar]
- van den Broek P. J. Antimicrobial drugs, microorganisms, and phagocytes. Rev Infect Dis. 1989 Mar-Apr;11(2):213–245. doi: 10.1093/clinids/11.2.213. [DOI] [PubMed] [Google Scholar]
