Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Mar;39(3):714–719. doi: 10.1128/AAC.39.3.714

Mode of action of the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel mechanism?

H Brötz 1, G Bierbaum 1, A Markus 1, E Molitor 1, H G Sahl 1
PMCID: PMC162610  PMID: 7793878

Abstract

Mersacidin is an antibiotic peptide produced by Bacillus sp. strain HIL Y-85,54728 that belongs to the group of lantibiotics. Its activity in vivo against methicillin-resistant Staphylococcus aureus strains compares with that of the glycopeptide antibiotic vancomycin (S. Chatterjee, D. K. Chatterjee, R. H. Jani, J. Blumbach, B. N. Ganguli, N. Klesel, M. Limbert, and G. Seibert, J. Antibiot. 45:839-845, 1992). Incubation of Staphylococcus simulans 22 with mersacidin resulted in the cessation of growth and slow lysis. Biosyntheses of DNA, RNA, and protein were not affected, whereas incorporation of glucose and D-alanine was inhibited and a regular reduction in the level of cell wall thickness was observed. Thus, unlike type A lantibiotics, mersacidin does not form pores in the cytoplasmic membrane but rather inhibits cell wall biosynthesis. Comparison with tunicamycin-treated cells indicated that peptidoglycan rather than teichoic acid metabolism is primarily affected. Mersacidin caused the excretion of a putative cell wall precursor into the culture supernatant. The formation of polymeric peptidoglycan was effectively inhibited in an in vitro assay, probably on the level of transglycosylation. In contrast to vancomycin, the activity of mersacidin was not antagonized by the tripeptide diacetyl-L-Lys-D-Ala-D-Ala, indicating that on the molecular level its mode of action differs from those of glycopeptide antibiotics. These data together with electron microscopy suggest that mersacidin acts on a novel target, which opens new perspectives for the treatment of methicillin-resistant S. aureus.

Full Text

The Full Text of this article is available as a PDF (679.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bierbaum G., Sahl H. G. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J Bacteriol. 1987 Dec;169(12):5452–5458. doi: 10.1128/jb.169.12.5452-5458.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bierbaum G., Sahl H. G. Lantibiotics--unusually modified bacteriocin-like peptides from gram-positive bacteria. Zentralbl Bakteriol. 1993 Feb;278(1):1–22. doi: 10.1016/s0934-8840(11)80275-6. [DOI] [PubMed] [Google Scholar]
  3. Chatterjee S., Chatterjee D. K., Jani R. H., Blumbach J., Ganguli B. N., Klesel N., Limbert M., Seibert G. Mersacidin, a new antibiotic from Bacillus. In vitro and in vivo antibacterial activity. J Antibiot (Tokyo) 1992 Jun;45(6):839–845. doi: 10.7164/antibiotics.45.839. [DOI] [PubMed] [Google Scholar]
  4. Chatterjee S., Chatterjee S., Lad S. J., Phansalkar M. S., Rupp R. H., Ganguli B. N., Fehlhaber H. W., Kogler H. Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. J Antibiot (Tokyo) 1992 Jun;45(6):832–838. doi: 10.7164/antibiotics.45.832. [DOI] [PubMed] [Google Scholar]
  5. Giesbrecht P., Kersten T., Wecke J. Fan-shaped ejections of regularly arranged murosomes involved in penicillin-induced death of staphylococci. J Bacteriol. 1992 Apr;174(7):2241–2252. doi: 10.1128/jb.174.7.2241-2252.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kleinkauf H., von Döhren H. Biosynthesis of peptide antibiotics. Annu Rev Microbiol. 1987;41:259–289. doi: 10.1146/annurev.mi.41.100187.001355. [DOI] [PubMed] [Google Scholar]
  7. Kohlrausch U., Höltje J. V. One-step purification procedure for UDP-N-acetylmuramyl-peptide murein precursors from Bacillus cereus. FEMS Microbiol Lett. 1991 Mar 1;62(2-3):253–257. doi: 10.1016/0378-1097(91)90166-8. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Nagarajan R. Antibacterial activities and modes of action of vancomycin and related glycopeptides. Antimicrob Agents Chemother. 1991 Apr;35(4):605–609. doi: 10.1128/aac.35.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Niu W. W., Neu H. C. Activity of mersacidin, a novel peptide, compared with that of vancomycin, teicoplanin, and daptomycin. Antimicrob Agents Chemother. 1991 May;35(5):998–1000. doi: 10.1128/aac.35.5.998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Perkins H. R. Specificity of combination between mucopeptide precursors and vancomycin or ristocetin. Biochem J. 1969 Jan;111(2):195–205. doi: 10.1042/bj1110195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ruhr E., Sahl H. G. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob Agents Chemother. 1985 May;27(5):841–845. doi: 10.1128/aac.27.5.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sahl H. G., Brandis H. Mode of action of the staphylococcin-like peptide Pep 5 and culture conditions effecting its activity. Zentralbl Bakteriol Mikrobiol Hyg A. 1982 Jun;252(2):166–175. [PubMed] [Google Scholar]
  14. Sahl H. G., Brandis H. Production, purification and chemical properties of an antistaphylococcal agent produced by Staphylococcus epidermidis. J Gen Microbiol. 1981 Dec;127(2):377–384. doi: 10.1099/00221287-127-2-377. [DOI] [PubMed] [Google Scholar]
  15. Sahl H. G., Hahn C., Brandis H. Interaction of the staphylococcin-like peptide Pep 5 with cell walls and isolated cell wall components of Gram-positive bacteria. Zentralbl Bakteriol Mikrobiol Hyg A. 1985 Oct;260(2):197–205. doi: 10.1016/s0176-6724(85)80115-2. [DOI] [PubMed] [Google Scholar]
  16. Schnell N., Entian K. D., Schneider U., Götz F., Zähner H., Kellner R., Jung G. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature. 1988 May 19;333(6170):276–278. doi: 10.1038/333276a0. [DOI] [PubMed] [Google Scholar]
  17. Schwalbe R. S., Ritz W. J., Verma P. R., Barranco E. A., Gilligan P. H. Selection for vancomycin resistance in clinical isolates of Staphylococcus haemolyticus. J Infect Dis. 1990 Jan;161(1):45–51. doi: 10.1093/infdis/161.1.45. [DOI] [PubMed] [Google Scholar]
  18. Somma S., Merati W., Parenti F. Gardimycin, a new antibiotic inhibiting peptidoglycan synthesis. Antimicrob Agents Chemother. 1977 Mar;11(3):396–401. doi: 10.1128/aac.11.3.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wyke A. W., Ward J. B. Biosynthesis of wall polymers in Bacillus subtilis. J Bacteriol. 1977 Jun;130(3):1055–1063. doi: 10.1128/jb.130.3.1055-1063.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES