Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Mar;39(3):739–745. doi: 10.1128/AAC.39.3.739

Antigenic properties and immunoelectron microscopic localization of Mycobacterium fortuitum beta-lactamase.

B Wagner 1, L Fattorini 1, M Wagner 1, S H Jin 1, R Stracke 1, G Amicosante 1, N Franceschini 1, G Orefici 1
PMCID: PMC162615  PMID: 7793883

Abstract

Mycobacterium fortuitum is a fast-growing Mycobacterium species which produces a beta-lactamase involved in the intrinsic resistance of the microorganism to beta-lactam antibiotics. An anti-beta-lactamase serum against the purified enzyme was raised in rabbits. Antibody binding was specific for native beta-lactamase, and enzyme activity was partially inhibited by the serum; furthermore, cross-reactions with denatured class A beta-lactamases were observed. This serum was used as a probe in immunogold labeling for the localization of the cell-bound beta-lactamase in both the low-level producer ATCC 19542 (parental strain) and the overproducer mutant D316. By the combination of preembedding immunogold labeling and replica technique, it was shown that the beta-lactamase was uniformly distributed on the whole external cell surface, where it appeared to be associated with a Tween 80-removable capsule-like material. Compared with the parental strain, a much higher level of expression of surface enzyme was observed in strain D316. Surface labeling was more intense in the stationary phase of growth than in exponentially growing cells. The data obtained are interpreted in the context of the intrinsic resistance of M. fortuitum to beta-lactam antibiotics.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amicosante G., Franceschini N., Segatore B., Oratore A., Fattorini L., Orefici G., Van Beeumen J., Frere J. M. Characterization of a beta-lactamase produced in Mycobacterium fortuitum D316. Biochem J. 1990 Nov 1;271(3):729–734. doi: 10.1042/bj2710729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernadac A., Bolla J. M., Lazdunski C., Inouye M., Pages J. M. Precise localization of an overproduced periplasmic protein in Escherichia coli: use of double immuno-gold labelling. Biol Cell. 1987;61(3):141–147. doi: 10.1111/j.1768-322x.1987.tb00580.x. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Bush K. Characterization of beta-lactamases. Antimicrob Agents Chemother. 1989 Mar;33(3):259–263. doi: 10.1128/aac.33.3.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bush K. Classification of beta-lactamases: groups 1, 2a, 2b, and 2b'. Antimicrob Agents Chemother. 1989 Mar;33(3):264–270. doi: 10.1128/aac.33.3.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bénichou J. C., Fréhel C., Ryter A. Improved sectioning and ultrastructure of bacteria and animal cells embedded in Lowicryl. J Electron Microsc Tech. 1990 Apr;14(4):289–297. doi: 10.1002/jemt.1060140402. [DOI] [PubMed] [Google Scholar]
  7. Casal M. J., Rodriguez F. C., Benavente M. C. In vitro susceptibility of Mycobacterium fortuitum and Mycobacterium chelonei to cefmetazole. Antimicrob Agents Chemother. 1985 Feb;27(2):282–283. doi: 10.1128/aac.27.2.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cynamon M. H., Palmer G. S. In vitro susceptibility of Mycobacterium fortuitum to N-formimidoyl thienamycin and several cephamycins. Antimicrob Agents Chemother. 1982 Dec;22(6):1079–1081. doi: 10.1128/aac.22.6.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fattorini L., Orefici G., Jin S. H., Scardaci G., Amicosante G., Franceschini N., Chopra I. Resistance to beta-lactams in Mycobacterium fortuitum. Antimicrob Agents Chemother. 1992 May;36(5):1068–1072. doi: 10.1128/aac.36.5.1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Franceschini N., Amicosante G., Perilli M., Maccarrone M., Oratore A., van Beeumen J., Frère J. M. Proteolytic interconversion and N-terminal sequences of the Citrobacter diversus major beta-lactamases. Biochem J. 1991 May 1;275(Pt 3):629–633. doi: 10.1042/bj2750629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Galleni M., Franceschini N., Quinting B., Fattorini L., Orefici G., Oratore A., Frère J. M., Amicosante G. Use of the chromosomal class A beta-lactamase of Mycobacterium fortuitum D316 to study potentially poor substrates and inhibitory beta-lactam compounds. Antimicrob Agents Chemother. 1994 Jul;38(7):1608–1614. doi: 10.1128/aac.38.7.1608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Galleni M., Lindberg F., Normark S., Cole S., Honore N., Joris B., Frere J. M. Sequence and comparative analysis of three Enterobacter cloacae ampC beta-lactamase genes and their products. Biochem J. 1988 Mar 15;250(3):753–760. doi: 10.1042/bj2500753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Geoghegan W. D., Ackerman G. A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem. 1977 Nov;25(11):1187–1200. doi: 10.1177/25.11.21217. [DOI] [PubMed] [Google Scholar]
  14. Guan T., Ghosh A., Ghosh B. K. Immunoelectron microscopic double labeling of alkaline phosphatase and penicillinase with colloidal gold in frozen thin sections of Bacillus licheniformis 749/C. J Bacteriol. 1985 Oct;164(1):107–113. doi: 10.1128/jb.164.1.107-113.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ishii Y., Ichikawa M., Yamaguchi K., Takano K., Inoue M. Localization of cephalosporinase in Enterobacter cloacae by immunocytochemical examination. J Antibiot (Tokyo) 1991 Oct;44(10):1088–1095. doi: 10.7164/antibiotics.44.1088. [DOI] [PubMed] [Google Scholar]
  16. Jacques M., Graham L. Improved preservation of bacterial capsule for electron microscopy. J Electron Microsc Tech. 1989 Feb;11(2):167–169. doi: 10.1002/jemt.1060110212. [DOI] [PubMed] [Google Scholar]
  17. Jarlier V., Gutmann L., Nikaido H. Interplay of cell wall barrier and beta-lactamase activity determines high resistance to beta-lactam antibiotics in Mycobacterium chelonae. Antimicrob Agents Chemother. 1991 Sep;35(9):1937–1939. doi: 10.1128/aac.35.9.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jarlier V., Nikaido H. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol. 1990 Mar;172(3):1418–1423. doi: 10.1128/jb.172.3.1418-1423.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  20. Masaki S., Sugimori G., Okamoto A., Imose J., Hayashi Y. Effect of Tween 80 on formation of the superficial L1 layer of the Mycobacterium avium-Mycobacterium intracellulare complex. J Clin Microbiol. 1991 Jul;29(7):1453–1456. doi: 10.1128/jcm.29.7.1453-1456.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nash D. R., Wallace R. J., Jr, Steingrube V. A., Udou T., Steele L. C., Forrester G. D. Characterization of beta-lactamases in Mycobacterium fortuitum including a role in beta-lactam resistance and evidence of partial inducibility. Am Rev Respir Dis. 1986 Dec;134(6):1276–1282. doi: 10.1164/arrd.1986.134.5.1276. [DOI] [PubMed] [Google Scholar]
  22. Rastogi N., Hellio R., David H. L. A new insight into the mycobacterial cell envelope architecture by the localization of antigens in ultrathin sections. Zentralbl Bakteriol. 1991 Aug;275(3):287–302. doi: 10.1016/s0934-8840(11)80292-6. [DOI] [PubMed] [Google Scholar]
  23. Rastogi N. Recent observations concerning structure and function relationships in the mycobacterial cell envelope: elaboration of a model in terms of mycobacterial pathogenicity, virulence and drug-resistance. Res Microbiol. 1991 May;142(4):464–476. doi: 10.1016/0923-2508(91)90121-p. [DOI] [PubMed] [Google Scholar]
  24. Richmond M. H. Immunological techniques for studying beta-lactamases. Methods Enzymol. 1975;43:86–100. doi: 10.1016/0076-6879(75)43082-8. [DOI] [PubMed] [Google Scholar]
  25. Slot J. W., Geuze H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
  26. Timm J., Perilli M. G., Duez C., Trias J., Orefici G., Fattorini L., Amicosante G., Oratore A., Joris B., Frère J. M. Transcription and expression analysis, using lacZ and phoA gene fusions, of Mycobacterium fortuitum beta-lactamase genes cloned from a natural isolate and a high-level beta-lactamase producer. Mol Microbiol. 1994 May;12(3):491–504. doi: 10.1111/j.1365-2958.1994.tb01037.x. [DOI] [PubMed] [Google Scholar]
  27. Tipper D. J. Mode of action of beta-lactam antibiotics. Pharmacol Ther. 1985;27(1):1–35. doi: 10.1016/0163-7258(85)90062-2. [DOI] [PubMed] [Google Scholar]
  28. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Udou T., Mizuguchi Y., Yamada T. Biochemical mechanisms of antibiotic resistance in a clinical isolate of Mycobacterium fortuitum. Presence of beta-lactamase and aminoglycoside-acetyltransferase and possible participation of altered drug transport on the resistance mechanism. Am Rev Respir Dis. 1986 Apr;133(4):653–657. doi: 10.1164/arrd.1986.133.4.653. [DOI] [PubMed] [Google Scholar]
  30. Wallace R. J., Jr, Musser J. M., Hull S. I., Silcox V. A., Steele L. C., Forrester G. D., Labidi A., Selander R. K. Diversity and sources of rapidly growing mycobacteria associated with infections following cardiac surgery. J Infect Dis. 1989 Apr;159(4):708–716. doi: 10.1093/infdis/159.4.708. [DOI] [PubMed] [Google Scholar]
  31. Wallace R. J., Jr, Swenson J. M., Silcox V. A., Good R. C., Tschen J. A., Stone M. S. Spectrum of disease due to rapidly growing mycobacteria. Rev Infect Dis. 1983 Jul-Aug;5(4):657–679. doi: 10.1093/clinids/5.4.657. [DOI] [PubMed] [Google Scholar]
  32. Yamamoto S., Lampen J. O. The hydrophobic membrane penicillinase of Bacillus licheniformis 749/C. Characterization of the hydrophilic enzyme and phospholipopeptide produced by trypsin cleavage. J Biol Chem. 1976 Jul 10;251(13):4102–4110. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES