Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Apr;39(4):812–818. doi: 10.1128/aac.39.4.812

Target for bacteriostatic and bactericidal activities of beta-lactam antibiotics against Escherichia coli resides in different penicillin-binding proteins.

G Satta 1, G Cornaglia 1, A Mazzariol 1, G Golini 1, S Valisena 1, R Fontana 1
PMCID: PMC162634  PMID: 7785976

Abstract

The relationship between cell-killing kinetics and penicillin-binding protein (PBP) saturation has been evaluated in the permeability mutant Escherichia coli DC2 in which the antimicrobial activity of beta-lactams has been described as being directly related to the extent of saturation of the PBP target(s). Saturation of a single PBP by cefsulodin (PBP 1s), mecillinam (PBP 2), and aztreonam (PBP 3) resulted in a slow rate of killing (2.5-, 1.5-, and 0.8-log-unit decreases in the number of CFU per milliliter, respectively, in 6 h). Saturation of two of the three essential PBPs resulted in a marked increase in the rate of killing, which reached the maximum value when PBPs 1s and 2 were simultaneously saturated by a combination of cefsulodin and mecillinam (4.7-log-unit decrease in the number of CFU per milliliter in 6 h). Inactivation of all three essential PBPs by the combination of cefsulodin, mecillinam, and aztreonam further increased the killing kinetics (5.5-log-unit decrease in the number of CFU per milliliter), and this was not significantly changed upon additional saturation of the nonessential PBPs 5 and 6 by cefoxitin. Similar relationships between PBP saturation and killing kinetics were obtained with imipenem and meropenem at concentrations which inhibited only one PBP (PBP 2), only two PBPs (PBP 1s and 2), or all three essential PBPs. Saturation of one or more PBPs also resulted in a different rate of bacteriolysis, the highest rate being obtained by the cefsulodin-mecillinam combination and by 5 micrograms of either imipenem or meropenem per ml. All of these conditions caused saturation of PBP 2 and saturation or extensive binding of PBP 1s. However, none of these conditions caused determined the fastest possible rate of killing, which occurred only when all three essential PBPs were saturated. It was concluded that the actual killing effect of beta-lactams is reflected by killing rates that approach the fastest possible rate for the given microorganism and that the targets for the bactericidal activity are precisely those PBPs whose saturation or binding occurs under conditions.

Full Text

The Full Text of this article is available as a PDF (301.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berenguer J., de Pedro M. A., Vázquez D. Induction of cell lysis in Escherichia coli: cooperative effect of nocardicin A and mecillinam. Antimicrob Agents Chemother. 1982 Feb;21(2):195–200. doi: 10.1128/aac.21.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Canepari P., Lleò M. M., Fontana R., Satta G. Streptococcus faecium mutants that are temperature sensitive for cell growth and show alterations in penicillin-binding proteins. J Bacteriol. 1987 Jun;169(6):2432–2439. doi: 10.1128/jb.169.6.2432-2439.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chase H. A., Fuller C., Reynolds P. E. The role of penicillin-proteins in the action of cephalosporins against Escherichia coli and Salmonella typhimurium. Eur J Biochem. 1981 Jul;117(2):301–310. doi: 10.1111/j.1432-1033.1981.tb06337.x. [DOI] [PubMed] [Google Scholar]
  4. Clark D. Permeability and susceptibility of Escherichia coli to beta-lactam compounds. Antimicrob Agents Chemother. 1981 Feb;19(2):369–370. doi: 10.1128/aac.19.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Curtis N. A., Orr D., Ross G. W., Boulton M. G. Affinities of penicillins and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their antibacterial activity. Antimicrob Agents Chemother. 1979 Nov;16(5):533–539. doi: 10.1128/aac.16.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fontana R., Canepari P., Satta G., Coyette J. Identification of the lethal target of benzylpenicillin in Streptococcus faecalis by in vivo penicillin binding studies. Nature. 1980 Sep 4;287(5777):70–72. doi: 10.1038/287070a0. [DOI] [PubMed] [Google Scholar]
  7. Fontana R., Canepari P., Satta G., Coyette J. Streptococcus faecium ATCC 9790 penicillin-binding proteins and penicillin sensitivity are heavily influenced by growth conditions: proposal for an indirect mechanism of growth inhibition by beta-lactams. J Bacteriol. 1983 May;154(2):916–923. doi: 10.1128/jb.154.2.916-923.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gutmann L., Vincent S., Billot-Klein D., Acar J. F., Mrèna E., Williamson R. Involvement of penicillin-binding protein 2 with other penicillin-binding proteins in lysis of Escherichia coli by some beta-lactam antibiotics alone and in synergistic lytic effect of amdinocillin (mecillinam). Antimicrob Agents Chemother. 1986 Dec;30(6):906–912. doi: 10.1128/aac.30.6.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Handwerger S., Tomasz A. Antibiotic tolerance among clinical isolates of bacteria. Rev Infect Dis. 1985 May-Jun;7(3):368–386. doi: 10.1093/clinids/7.3.368. [DOI] [PubMed] [Google Scholar]
  10. Henderson T. A., Dombrosky P. M., Young K. D. Artifactual processing of penicillin-binding proteins 7 and 1b by the OmpT protease of Escherichia coli. J Bacteriol. 1994 Jan;176(1):256–259. doi: 10.1128/jb.176.1.256-259.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Labischinski H. Consequences of the interaction of beta-lactam antibiotics with penicillin binding proteins from sensitive and resistant Staphylococcus aureus strains. Med Microbiol Immunol. 1992;181(5):241–265. doi: 10.1007/BF00198846. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lleo M. M., Canepari P., Satta G. Bacterial cell shape regulation: testing of additional predictions unique to the two-competing-sites model for peptidoglycan assembly and isolation of conditional rod-shaped mutants from some wild-type cocci. J Bacteriol. 1990 Jul;172(7):3758–3771. doi: 10.1128/jb.172.7.3758-3771.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lleó M. M., Canepari P., Cornaglia G., Fontana R., Satta G. Bacteriostatic and bactericidal activities of beta-lactams against Streptococcus (Enterococcus) faecium are associated with saturation of different penicillin-binding proteins. Antimicrob Agents Chemother. 1987 Oct;31(10):1618–1626. doi: 10.1128/aac.31.10.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richmond M. H., Clark D. C., Wotton S. Indirect method for assessing the penetration of beta-lactamase-nonsusceptible penicillins and cephalosporins in Escherichia coli strains. Antimicrob Agents Chemother. 1976 Aug;10(2):215–218. doi: 10.1128/aac.10.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Satta G., Botta G., Canepari P., Fontana R. Early initiation of deoxyribonucleic acid replication and shortening of generation time associated with inhibition of lateral wall formation by mecillinam. J Bacteriol. 1981 Oct;148(1):10–19. doi: 10.1128/jb.148.1.10-19.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Satta G., Cornaglia G., Canepari P., Pompei R. Evaluation of bactericidal activity of cefotaxime and other beta-lactams by a novel method. Drugs. 1988;35 (Suppl 2):35–40. doi: 10.2165/00003495-198800352-00009. [DOI] [PubMed] [Google Scholar]
  18. Satta G., Fontana R., Canepari P. The two-competing site (TCS) model for cell shape regulation in bacteria: the envelope as an integration point for the regulatory circuits of essential physiological events. Adv Microb Physiol. 1994;36:181–245. doi: 10.1016/s0065-2911(08)60180-0. [DOI] [PubMed] [Google Scholar]
  19. Spratt B. G. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2999–3003. doi: 10.1073/pnas.72.8.2999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spratt B. G. Properties of the penicillin-binding proteins of Escherichia coli K12,. Eur J Biochem. 1977 Jan;72(2):341–352. doi: 10.1111/j.1432-1033.1977.tb11258.x. [DOI] [PubMed] [Google Scholar]
  21. Sumita Y., Fukasawa M., Okuda T. Comparison of two carbapenems, SM-7338 and imipenem: affinities for penicillin-binding proteins and morphological changes. J Antibiot (Tokyo) 1990 Mar;43(3):314–320. doi: 10.7164/antibiotics.43.314. [DOI] [PubMed] [Google Scholar]
  22. Suzuki H., Nishimura Y., Hirota Y. On the process of cellular division in Escherichia coli: a series of mutants of E. coli altered in the penicillin-binding proteins. Proc Natl Acad Sci U S A. 1978 Feb;75(2):664–668. doi: 10.1073/pnas.75.2.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tomasz A. On the mechanism of the irreversible antimicrobial effects of beta-lactams. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):303–308. doi: 10.1098/rstb.1980.0047. [DOI] [PubMed] [Google Scholar]
  24. Tuomanen E., Gilbert K., Tomasz A. Modulation of bacteriolysis by cooperative effects of penicillin-binding proteins 1a and 3 in Escherichia coli. Antimicrob Agents Chemother. 1986 Nov;30(5):659–663. doi: 10.1128/aac.30.5.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tuomanen E., Schwartz J. Penicillin-binding protein 7 and its relationship to lysis of nongrowing Escherichia coli. J Bacteriol. 1987 Nov;169(11):4912–4915. doi: 10.1128/jb.169.11.4912-4915.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Waxman D. J., Strominger J. L. Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu Rev Biochem. 1983;52:825–869. doi: 10.1146/annurev.bi.52.070183.004141. [DOI] [PubMed] [Google Scholar]
  27. Williamson R., Gutmann L., Kitzis M. D., Acar J. F. An evaluation of the bacteriolytic and biochemical properties of ceftiolene (42980RP). J Antimicrob Chemother. 1984 Dec;14(6):581–593. doi: 10.1093/jac/14.6.581. [DOI] [PubMed] [Google Scholar]
  28. Yousif S. Y., Broome-Smith J. K., Spratt B. G. Lysis of Escherichia coli by beta-lactam antibiotics: deletion analysis of the role of penicillin-binding proteins 1A and 1B. J Gen Microbiol. 1985 Oct;131(10):2839–2845. doi: 10.1099/00221287-131-10-2839. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES