Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Apr;39(4):948–952. doi: 10.1128/aac.39.4.948

In vitro activities of novel antifolate drug combinations against Plasmodium falciparum and human granulocyte CFUs.

P A Winstanley 1, E K Mberu 1, I S Szwandt 1, A M Breckenridge 1, W M Watkins 1
PMCID: PMC162659  PMID: 7786001

Abstract

The potency of antimalarial dihydrofolate reductase inhibitors, alone and in synergistic combination with dihydropteroate synthetase inhibitors, against the Kenyan K39 strain of Plasmodium falciparum (pyrimethamine resistant) and against normal replicating human bone marrow cells in in vitro culture has been studied. Therapeutic indices and rank order of synergistic potency were derived. Trimethoprim, pyrimethamine, and the quinazolines WR159412 and WR158122 had the smallest therapeutic indices (1.39, 4.38, 2.56, and 90.0, respectively), while the three triazines clociguanil, WR99210, and chlorcycloguanil had the largest (3,562, 3,000, and 2,000, respectively). In rank order of decreasing activity against P. falciparum, the six most potent drug combinations were WR99210-dapsone, chlorcycloguanil-dapsone, WR158122-dapsone, WR159412-dapsone, WR159412-sulfamethoxazole, and chlorcycloguanil-sulfamethoxazole; pyrimethamine-sulfadoxine was the least potent combination. These experiments form a basis for the selection of rapidly eliminated antifolate combinations for further clinical testing.

Full Text

The Full Text of this article is available as a PDF (200.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berenbaum M. C. A method for testing for synergy with any number of agents. J Infect Dis. 1978 Feb;137(2):122–130. doi: 10.1093/infdis/137.2.122. [DOI] [PubMed] [Google Scholar]
  2. Bird O. D., Vaitkus J. W., Clarke J. 2-amino-4-hydroxyquinazolines as inhibitors of thymidylate synthetase. Mol Pharmacol. 1970 Sep;6(5):573–575. [PubMed] [Google Scholar]
  3. Bloland P. B., Redd S. C., Kazembe P., Tembenu R., Wirima J. J., Campbell C. C. Co-trimoxazole for childhood febrile illness in malaria-endemic regions. Lancet. 1991 Mar 2;337(8740):518–520. doi: 10.1016/0140-6736(91)91299-a. [DOI] [PubMed] [Google Scholar]
  4. Bradley T. R., Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966 Jun;44(3):287–299. doi: 10.1038/icb.1966.28. [DOI] [PubMed] [Google Scholar]
  5. Brooks D. R., Wang P., Read M., Watkins W. M., Sims P. F., Hyde J. E. Sequence variation of the hydroxymethyldihydropterin pyrophosphokinase: dihydropteroate synthase gene in lines of the human malaria parasite, Plasmodium falciparum, with differing resistance to sulfadoxine. Eur J Biochem. 1994 Sep 1;224(2):397–405. doi: 10.1111/j.1432-1033.1994.00397.x. [DOI] [PubMed] [Google Scholar]
  6. Canfield C. J., Milhous W. K., Ager A. L., Rossan R. N., Sweeney T. R., Lewis N. J., Jacobus D. P. PS-15: a potent, orally active antimalarial from a new class of folic acid antagonists. Am J Trop Med Hyg. 1993 Jul;49(1):121–126. doi: 10.4269/ajtmh.1993.49.121. [DOI] [PubMed] [Google Scholar]
  7. Chabner B. A., Young R. C. Threshold methotrexate concentration for in vivo inhibition of DNA synthesis in normal and tumorous target tissues. J Clin Invest. 1973 Aug;52(8):1804–1811. doi: 10.1172/JCI107362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Childs G. E., Lambros C. Analogues of N-benzyloxydihydrotriazines: in vitro antimalarial activity against Plasmodium falciparum. Ann Trop Med Parasitol. 1986 Apr;80(2):177–181. doi: 10.1080/00034983.1986.11812002. [DOI] [PubMed] [Google Scholar]
  9. Chulay J. D., Watkins W. M., Sixsmith D. G. Synergistic antimalarial activity of pyrimethamine and sulfadoxine against Plasmodium falciparum in vitro. Am J Trop Med Hyg. 1984 May;33(3):325–330. doi: 10.4269/ajtmh.1984.33.325. [DOI] [PubMed] [Google Scholar]
  10. Desjardins R. E., Canfield C. J., Haynes J. D., Chulay J. D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979 Dec;16(6):710–718. doi: 10.1128/aac.16.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Foote S. J., Galatis D., Cowman A. F. Amino acids in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum involved in cycloguanil resistance differ from those involved in pyrimethamine resistance. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3014–3017. doi: 10.1073/pnas.87.8.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gubler J. Sulfadoxine-pyrimethamine resistant malaria from west or central Africa. Br Med J (Clin Res Ed) 1988 Feb 6;296(6619):433–433. doi: 10.1136/bmj.296.6619.433-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hughes W. T., Jacobus D. P., Canfield C., Killmar J. Anti-Pneumocystis carinii activity of PS-15, a new biguanide folate antagonist. Antimicrob Agents Chemother. 1993 Jul;37(7):1417–1419. doi: 10.1128/aac.37.7.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hyde J. E. The dihydrofolate reductase-thymidylate synthetase gene in the drug resistance of malaria parasites. Pharmacol Ther. 1990;48(1):45–59. doi: 10.1016/0163-7258(90)90017-v. [DOI] [PubMed] [Google Scholar]
  15. Knight D. J., Peters W. The antimalarial activity of N-benzyloxydihydrotriazines. I. The activity of clociguanil (BRL 50216) against rodent malaria, and studies on its mode of action. Ann Trop Med Parasitol. 1980 Aug;74(4):393–404. [PubMed] [Google Scholar]
  16. Knight D. J., Williamson P. The antimalarial activity of N-benzyl-oxydihydrotriazines. IV. The development of resistance to BRL 6231 (4,6-diamino-1,2-dihyydro-2-,2-dimethyl-1-(2,4,5-trichloropropyloxy)-1,3,5 triazine hydrochloride) by Plasmodium berghei. Ann Trop Med Parasitol. 1982 Feb;76(1):9–14. [PubMed] [Google Scholar]
  17. Knight D. J., Williamson P. The antimalarial activity of N-benzyloxydihydrotriazines. II. The development of resistance to clociguanil (BRL 50216) and cycloguanil by P. berghei. Ann Trop Med Parasitol. 1980 Aug;74(4):405–413. [PubMed] [Google Scholar]
  18. Laing A. B. Studies on the chemotherapy of malaria. (III). Treatment of falciparum malaria in the Gambia, with BRL 50216 (4,6-diamino-(3, 4-dichlorobenzyloxy)-1,2-dihydro-2 2-dimethyl-1,3,5-triazine hydrochloride) alone and in combination with sulphonamides,. Trans R Soc Trop Med Hyg. 1974;68(2):133–138. doi: 10.1016/0035-9203(74)90186-2. [DOI] [PubMed] [Google Scholar]
  19. Landgraf B., Kollaritsch H., Wiedermann G., Wernsdorfer W. H. Plasmodium falciparum: susceptibility in vitro and in vivo to chloroquine and sulfadoxine-pyrimethamine in Ghanaian schoolchildren. Trans R Soc Trop Med Hyg. 1994 Jul-Aug;88(4):440–442. doi: 10.1016/0035-9203(94)90424-3. [DOI] [PubMed] [Google Scholar]
  20. Lege-Oguntoye L., Adagu S. I., Werblinska B., Ogala W. N., Slotboom A. B. Resistance of Plasmodium falciparum to sulfadoxine-pyrimethamine combination in semi-immune children in Zaria, northern Nigeria. Trans R Soc Trop Med Hyg. 1990 Jul-Aug;84(4):505–506. doi: 10.1016/0035-9203(90)90016-8. [DOI] [PubMed] [Google Scholar]
  21. Nirenberg A., Mosende C., Mehta B. M., Gisolfi A. L., Rosen G. High-dose methotrexate with citrovorum factor rescue: predictive value of serum methotrexate concentrations and corrective measures to avert toxicity. Cancer Treat Rep. 1977 Aug;61(5):779–783. [PubMed] [Google Scholar]
  22. Peterson D. S., Milhous W. K., Wellems T. E. Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3018–3022. doi: 10.1073/pnas.87.8.3018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SCHMIDT L. H., ROSSAN R. N., FISHER K. F. THE ACTIVITY OF A REPOSITORY FORM OF 4,6-DIAMINO-1(P-CHLOROPHENYL)-1,2-DIHYDRO-2,2-DIMETHYL-S-TRIAZINE AGAINST INFECTIONS WITH PLASMODIUM CYNOMOLGI. Am J Trop Med Hyg. 1963 Jul;12:494–503. doi: 10.4269/ajtmh.1963.12.494. [DOI] [PubMed] [Google Scholar]
  24. Schmidt L. H., Rossan R. N. Studies on the 2,4-diamino-6 substituted quinazolines. I. Antimalarial activities of 2,4-diamino-6-[(3,4-dichlorobenzyl)-nitrosoamino]-quinazoline (CI-679) as exhibited in rhesus monkeys infected with the Ro or Ro/PM strains of Plasmodium cynomolgi. Am J Trop Med Hyg. 1979 Sep;28(5):781–792. [PubMed] [Google Scholar]
  25. Sixsmith D. G., Watkins W. M., Chulay J. D., Spencer H. C. In vitro antimalarial activity of tetrahydrofolate dehydrogenase inhibitors. Am J Trop Med Hyg. 1984 Sep;33(5):772–776. doi: 10.4269/ajtmh.1984.33.772. [DOI] [PubMed] [Google Scholar]
  26. Snewin V. A., England S. M., Sims P. F., Hyde J. E. Characterisation of the dihydrofolate reductase-thymidylate synthetase gene from human malaria parasites highly resistant to pyrimethamine. Gene. 1989 Mar 15;76(1):41–52. doi: 10.1016/0378-1119(89)90006-1. [DOI] [PubMed] [Google Scholar]
  27. Stoller R. G., Hande K. R., Jacobs S. A., Rosenberg S. A., Chabner B. A. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med. 1977 Sep 22;297(12):630–634. doi: 10.1056/NEJM197709222971203. [DOI] [PubMed] [Google Scholar]
  28. Sudre P., Breman J. G., McFarland D., Koplan J. P. Treatment of chloroquine-resistant malaria in African children: a cost-effectiveness analysis. Int J Epidemiol. 1992 Feb;21(1):146–154. doi: 10.1093/ije/21.1.146. [DOI] [PubMed] [Google Scholar]
  29. Timmermanns P. M., Hess U., Jones M. E. Pyrimethamine/sulfadoxine resistant falciparum malaria in East Africa. Lancet. 1982 May 22;1(8282):1181–1181. doi: 10.1016/s0140-6736(82)92243-7. [DOI] [PubMed] [Google Scholar]
  30. Watkins W. M., Brandling-Bennett A. D., Nevill C. G., Carter J. Y., Boriga D. A., Howells R. E., Koech D. K. Chlorproguanil/dapsone for the treatment of non-severe Plasmodium falciparum malaria in Kenya: a pilot study. Trans R Soc Trop Med Hyg. 1988;82(3):398–403. doi: 10.1016/0035-9203(88)90133-2. [DOI] [PubMed] [Google Scholar]
  31. Watkins W. M., Mosobo M. Treatment of Plasmodium falciparum malaria with pyrimethamine-sulfadoxine: selective pressure for resistance is a function of long elimination half-life. Trans R Soc Trop Med Hyg. 1993 Jan-Feb;87(1):75–78. doi: 10.1016/0035-9203(93)90431-o. [DOI] [PubMed] [Google Scholar]
  32. Watkins W. M., Percy M., Crampton J. M., Ward S., Koech D., Howells R. E. The changing response of Plasmodium falciparum to antimalarial drugs in east Africa. Trans R Soc Trop Med Hyg. 1988;82(1):21–26. doi: 10.1016/0035-9203(88)90250-7. [DOI] [PubMed] [Google Scholar]
  33. Watkins W. M., Sixsmith D. G., Chulay J. D., Spencer H. C. Antagonism of sulfadoxine and pyrimethamine antimalarial activity in vitro by p-aminobenzoic acid, p-aminobenzoylglutamic acid and folic acid. Mol Biochem Parasitol. 1985 Jan;14(1):55–61. doi: 10.1016/0166-6851(85)90105-7. [DOI] [PubMed] [Google Scholar]
  34. Watkins W. M., Sixsmith D. G., Chulay J. D. The activity of proguanil and its metabolites, cycloguanil and p-chlorophenylbiguanide, against Plasmodium falciparum in vitro. Ann Trop Med Parasitol. 1984 Jun;78(3):273–278. doi: 10.1080/00034983.1984.11811816. [DOI] [PubMed] [Google Scholar]
  35. White N. J. Antimalarial drug resistance: the pace quickens. J Antimicrob Chemother. 1992 Nov;30(5):571–585. doi: 10.1093/jac/30.5.571. [DOI] [PubMed] [Google Scholar]
  36. Winstanley P. A., Watkins W. M., Newton C. R., Nevill C., Mberu E., Warn P. A., Waruiru C. M., Mwangi I. N., Warrell D. A., Marsh K. The disposition of oral and intramuscular pyrimethamine/sulphadoxine in Kenyan children with high parasitaemia but clinically non-severe falciparum malaria. Br J Clin Pharmacol. 1992 Feb;33(2):143–148. doi: 10.1111/j.1365-2125.1992.tb04016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yeo A. E., Rieckmann K. H. The activity of PS-15 in combination with sulfamethoxazole. Trop Med Parasitol. 1994 Jun;45(2):136–137. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES