Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 May;39(5):1077–1081. doi: 10.1128/aac.39.5.1077

Evaluation of water-soluble pneumocandin analogs L-733560, L-705589, and L-731373 with mouse models of disseminated aspergillosis, candidiasis, and cryptococcosis.

G K Abruzzo 1, A M Flattery 1, C J Gill 1, L Kong 1, J G Smith 1, D Krupa 1, V B Pikounis 1, H Kropp 1, K Bartizal 1
PMCID: PMC162686  PMID: 7625792

Abstract

The activities of the water-soluble pneumocandin derivatives L-733560, L-705589, and L-731373 were evaluated in mouse models of disseminated aspergillosis, candidiasis, and cryptococcosis and were compared with those of commercially available antifungal agents. Pneumocandins are inhibitors of 1,3-beta-D-glucan synthesis. In the aspergillosis model, L-733560 and L-705589 significantly prolonged the survival of DBA/2N mice challenged intravenously with Aspergillus fumigatus conidia. L-733560 and L-705589 exhibited efficacies comparable to that of amphotericin B (AMB) with 90% effective doses of 0.48, 0.12, and 0.36 mg/kg of body weight, respectively. Two mouse models of disseminated candidiasis were used to evaluate these compounds. In both models, mice were challenged intravenously with Candida albicans. In a C. albicans survival model with DBA/2N and CD-1 mice, the efficacy of L-733560 was comparable to that of AMB, while L-731373 and L-705589 were somewhat less active. In a previously described C. albicans target organ kidney assay, the pneumocandin analogs and AMB at doses of > or = 0.09 mg/kg were effective in sterilizing kidneys, while fluconazole and ketoconazole were considerably less active and did not sterilize kidneys when they were used at concentrations of < or = 100 mg/kg. Although orally administered L-733560 showed activity in both candidiasis models, its efficacy was reduced compared with that of parenterally administered drug. In a disseminated cryptococcosis mouse model that measures the number of CFU of Cryptococcus neoformans per gram of brain and spleen, L-733560 at 10 mg/kg was ineffective in reducing the counts in organs, while AMB at 0.31 mg/kg sterilized the organs.These results indicate that the pneumocandins may be beneficial as potent parenterally administered therapeutic agents for disseminated aspergillosis and candidiasis.

Full Text

The Full Text of this article is available as a PDF (228.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartizal K., Abruzzo G., Trainor C., Krupa D., Nollstadt K., Schmatz D., Schwartz R., Hammond M., Balkovec J., Vanmiddlesworth F. In vitro antifungal activities and in vivo efficacies of 1,3-beta-D-glucan synthesis inhibitors L-671,329, L-646,991, tetrahydroechinocandin B, and L-687,781, a papulacandin. Antimicrob Agents Chemother. 1992 Aug;36(8):1648–1657. doi: 10.1128/aac.36.8.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartizal K., Scott T., Abruzzo G. K., Gill C. J., Pacholok C., Lynch L., Kropp H. In vitro evaluation of the pneumocandin antifungal agent L-733560, a new water-soluble hybrid of L-705589 and L-731373. Antimicrob Agents Chemother. 1995 May;39(5):1070–1076. doi: 10.1128/aac.39.5.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bouffard F. A., Zambias R. A., Dropinski J. F., Balkovec J. M., Hammond M. L., Abruzzo G. K., Bartizal K. F., Marrinan J. A., Kurtz M. B., McFadden D. C. Synthesis and antifungal activity of novel cationic pneumocandin B(o) derivatives. J Med Chem. 1994 Jan 21;37(2):222–225. doi: 10.1021/jm00028a003. [DOI] [PubMed] [Google Scholar]
  4. Gallis H. A., Drew R. H., Pickard W. W. Amphotericin B: 30 years of clinical experience. Rev Infect Dis. 1990 Mar-Apr;12(2):308–329. doi: 10.1093/clinids/12.2.308. [DOI] [PubMed] [Google Scholar]
  5. Gordee R. S., Zeckner D. J., Ellis L. F., Thakkar A. L., Howard L. C. In vitro and in vivo anti-Candida activity and toxicology of LY121019. J Antibiot (Tokyo) 1984 Sep;37(9):1054–1065. doi: 10.7164/antibiotics.37.1054. [DOI] [PubMed] [Google Scholar]
  6. Hector R. F., Yee E., Collins M. S. Use of DBA/2N mice in models of systemic candidiasis and pulmonary and systemic aspergillosis. Infect Immun. 1990 May;58(5):1476–1478. doi: 10.1128/iai.58.5.1476-1478.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kurtz M. B., Douglas C., Marrinan J., Nollstadt K., Onishi J., Dreikorn S., Milligan J., Mandala S., Thompson J., Balkovec J. M. Increased antifungal activity of L-733,560, a water-soluble, semisynthetic pneumocandin, is due to enhanced inhibition of cell wall synthesis. Antimicrob Agents Chemother. 1994 Dec;38(12):2750–2757. doi: 10.1128/aac.38.12.2750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lyman C. A., Walsh T. J. Systemically administered antifungal agents. A review of their clinical pharmacology and therapeutic applications. Drugs. 1992 Jul;44(1):9–35. doi: 10.2165/00003495-199244010-00002. [DOI] [PubMed] [Google Scholar]
  9. Pregibon D. Resistant fits for some commonly used logistic models with medical application. Biometrics. 1982 Jun;38(2):485–498. [PubMed] [Google Scholar]
  10. Schmatz D. M., Abruzzo G., Powles M. A., McFadden D. C., Balkovec J. M., Black R. M., Nollstadt K., Bartizal K. Pneumocandins from Zalerion arboricola. IV. Biological evaluation of natural and semisynthetic pneumocandins for activity against Pneumocystis carinii and Candida species. J Antibiot (Tokyo) 1992 Dec;45(12):1886–1891. doi: 10.7164/antibiotics.45.1886. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES