Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 May;39(5):1093–1096. doi: 10.1128/aac.39.5.1093

Effects of MICs and sub-MICs of antibiotics on production of capsular polysaccharide of Klebsiella pneumoniae.

T K Held 1, C Adamczik 1, M Trautmann 1, A S Cross 1
PMCID: PMC162689  PMID: 7625794

Abstract

In the present study, we examined whether MICs and sub-MICs of antimicrobial agents belonging to two different classes, ciprofloxacin and ceftazidime, were able to influence the production and release of cell-associated and soluble (extracellular) capsular polysaccharide (CPS), respectively, in a heavily encapsulated strain of Klebsiella pneumoniae (B5055). Using a CPS-specific enzyme-linked immunosorbent assay, we found that the amount of cell-associated CPS increased in a dose-dependent manner by more than 10-fold under the influence of the MIC of ceftazidime and by more than 100-fold under the influence of the MIC of ciprofloxacin. The largest amounts of CPS were measured by using the MIC of either antibiotic substance. Electron microscopic studies showed that the diameter of the capsule was significantly increased compared with the diameter for untreated controls. Thus, both antimicrobial agents genuinely stimulated CPS production.

Full Text

The Full Text of this article is available as a PDF (194.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlstedt S. The antibacterial effects of low concentrations of antibiotics and host defence factors: a review. J Antimicrob Chemother. 1981 Nov;8 (Suppl 100):59–70. doi: 10.1093/jac/8.suppl_c.59. [DOI] [PubMed] [Google Scholar]
  2. Atkinson B. A., Amaral L. Sublethal concentrations of antibiotics, effects on bacteria and the immune system. Crit Rev Microbiol. 1982;9(2):101–138. doi: 10.3109/10408418209104487. [DOI] [PubMed] [Google Scholar]
  3. Courtright J. B., Turowski D. A., Sonstein S. A. Alteration of bacterial DNA structure, gene expression, and plasmid encoded antibiotic resistance following exposure to enoxacin. J Antimicrob Chemother. 1988 Feb;21 (Suppl B):1–18. doi: 10.1093/jac/21.suppl_b.1. [DOI] [PubMed] [Google Scholar]
  4. Dalhoff A., Döring G. Action of quinolones on gene expression and bacterial membranes. Antibiot Chemother (1971) 1987;39:205–214. doi: 10.1159/000414346. [DOI] [PubMed] [Google Scholar]
  5. Domenico P., Hopkins T., Schoch P. E., Cunha B. A. Potentiation of aminoglycoside inhibition and reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate. J Antimicrob Chemother. 1990 Jun;25(6):903–914. doi: 10.1093/jac/25.6.903. [DOI] [PubMed] [Google Scholar]
  6. Elliott T. S., Shelton A., Greenwood D. The response of Escherichia coli to ciprofloxacin and norfloxacin. J Med Microbiol. 1987 Feb;23(1):83–88. doi: 10.1099/00222615-23-1-83. [DOI] [PubMed] [Google Scholar]
  7. Hanberger H., Nilsson L. E., Maller R., Nilsson M. Pharmacodynamics of beta-lactam antibiotics on gram-negative bacteria: initial killing, morphology and postantibiotic effect. Scand J Infect Dis Suppl. 1990;74:118–123. [PubMed] [Google Scholar]
  8. Held T. K., Trautmann M., Mielke M. E., Neudeck H., Cryz S. J., Jr, Cross A. S. Monoclonal antibody against Klebsiella capsular polysaccharide reduces severity and hematogenic spread of experimental Klebsiella pneumoniae pneumonia. Infect Immun. 1992 May;60(5):1771–1778. doi: 10.1128/iai.60.5.1771-1778.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Highsmith A. K., Jarvis W. R. Klebsiella pneumoniae: selected virulence factors that contribute to pathogenicity. Infect Control. 1985 Feb;6(2):75–77. doi: 10.1017/s0195941700062640. [DOI] [PubMed] [Google Scholar]
  10. Kadurugamuwa J. L., Anwar H., Brown M. R., Hengstler B., Kunz S., Zak O. Influence of cephalosporins and iron on surface protein antigens of Klebsiella pneumoniae in vivo. Antimicrob Agents Chemother. 1988 Mar;32(3):364–368. doi: 10.1128/aac.32.3.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kadurugamuwa J. L., Anwar H., Brown M. R., Zak O. Effect of subinhibitory concentrations of cephalosporins on surface properties and siderophore production in iron-depleted Klebsiella pneumoniae. Antimicrob Agents Chemother. 1985 Feb;27(2):220–223. doi: 10.1128/aac.27.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keller N., Raponi G., Hoepelman I. M., Overbeek B. P., Rozenberg-Arska M., Verhoef J. Effect of sub-minimal inhibitory concentrations of ciprofloxacin and fleroxacin on the bacterial capsular antigen and opsonophagocytosis by human polymorphonuclear leukocytes. Zentralbl Bakteriol. 1991 Jan;274(4):519–526. doi: 10.1016/s0934-8840(11)80090-3. [DOI] [PubMed] [Google Scholar]
  13. King B. F., Wilkinson B. J. Binding of human immunoglobulin G to protein A in encapsulated Staphylococcus aureus. Infect Immun. 1981 Sep;33(3):666–672. doi: 10.1128/iai.33.3.666-672.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Piddock L. J., Walters R. N. Bactericidal activities of five quinolones for Escherichia coli strains with mutations in genes encoding the SOS response or cell division. Antimicrob Agents Chemother. 1992 Apr;36(4):819–825. doi: 10.1128/aac.36.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pruul H., McDonald P. J. Lomefloxacin-induced modification of the kinetics of growth of gram-negative bacteria and susceptibility to phagocytic killing by human neutrophils. J Antimicrob Chemother. 1990 Jan;25(1):91–101. doi: 10.1093/jac/25.1.91. [DOI] [PubMed] [Google Scholar]
  17. Sonstein S. A., Burnham J. C. Effect of low concentrations of quinolone antibiotics on bacterial virulence mechanisms. Diagn Microbiol Infect Dis. 1993 May-Jun;16(4):277–289. doi: 10.1016/0732-8893(93)90078-l. [DOI] [PubMed] [Google Scholar]
  18. Trautmann M., Cryz S. J., Jr, Sadoff J. C., Cross A. S. A murine monoclonal antibody against Klebsiella capsular polysaccharide is opsonic in vitro and protects against experimental Klebsiella pneumoniae infection. Microb Pathog. 1988 Sep;5(3):177–187. doi: 10.1016/0882-4010(88)90020-4. [DOI] [PubMed] [Google Scholar]
  19. Voigt W. H., Zeiler H. J. Influence of ciprofloxacin on the ultrastructure of gram-negative and gram-positive bacteria. Arzneimittelforschung. 1985;35(10):1600–1603. [PubMed] [Google Scholar]
  20. Wilkinson B. J., Sisson S. P., Kim Y., Peterson P. K. Localization of the third component of complement on the cell wall of encapsulated Staphylococcus aureus M: implications for the mechanism of resistance to phagocytosis. Infect Immun. 1979 Dec;26(3):1159–1163. doi: 10.1128/iai.26.3.1159-1163.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williams P., Lambert P. A., Brown M. R. Penetration of immunoglobulins through the Klebsiella capsule and their effect on cell-surface hydrophobicity. J Med Microbiol. 1988 May;26(1):29–35. doi: 10.1099/00222615-26-1-29. [DOI] [PubMed] [Google Scholar]
  22. Williams P., Lambert P. A., Haigh C. G., Brown M. R. The influence of the O and K antigens of Klebsiella aerogenes on surface hydrophobicity and susceptibility to phagocytosis and antimicrobial agents. J Med Microbiol. 1986 Mar;21(2):125–132. doi: 10.1099/00222615-21-2-125. [DOI] [PubMed] [Google Scholar]
  23. Williams P. Sub-MICs of cefuroxime and ciprofloxacin influence interaction of complement and immunoglobulins with Klebsiella pneumoniae. Antimicrob Agents Chemother. 1987 May;31(5):758–762. doi: 10.1128/aac.31.5.758. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES