Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1980 Jun;55(6):417–421. doi: 10.1136/adc.55.6.417

Lactoferrin in human milk: its role in iron absorption and protection against enteric infection in the newborn infant.

J H Brock
PMCID: PMC1626933  PMID: 7002055

Full text

PDF
417

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agunod M., Yamaguchi N., Lopez R., Luhby A. L., Glass G. B. Correlative study of hydrochloric acid, pepsin, and intrinsic factor secretion in newborns and infants. Am J Dig Dis. 1969 Jun;14(6):400–414. doi: 10.1007/BF02239360. [DOI] [PubMed] [Google Scholar]
  2. Aisen P. Citrate-mediated exchange of FE3+ among tranferrin molecules. Biochem Biophys Res Commun. 1968 Jul 26;32(2):220–226. doi: 10.1016/0006-291x(68)90372-0. [DOI] [PubMed] [Google Scholar]
  3. Aisen P., Leibman A. Lactoferrin and transferrin: a comparative study. Biochim Biophys Acta. 1972 Feb 29;257(2):314–323. doi: 10.1016/0005-2795(72)90283-8. [DOI] [PubMed] [Google Scholar]
  4. Arnold R. R., Cole M. F., McGhee J. R. A bactericidal effect for human lactoferrin. Science. 1977 Jul 15;197(4300):263–265. doi: 10.1126/science.327545. [DOI] [PubMed] [Google Scholar]
  5. Bluard-Deconinck J. M., Williams J., Evans R. W., van Snick J., Osinski P. A., Masson P. L. Iron-binding fragments from the N-terminal and C-terminal regions of human lactoferrin. Biochem J. 1978 May 1;171(2):321–327. doi: 10.1042/bj1710321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brock J. H., Arzabe F., Lampreave F., Piñeiro A. The effect of trypsin on bovine transferrin and lactoferrin. Biochim Biophys Acta. 1976 Sep 28;446(1):214–225. doi: 10.1016/0005-2795(76)90112-4. [DOI] [PubMed] [Google Scholar]
  7. Brock J. H. Human milk and iron absorption. Pediatrics. 1978 Sep;62(3):440–441. [PubMed] [Google Scholar]
  8. Brock J. H., Piñeiro A., Lampreave F. The effect of trypsin and chymotrypsin on the antibacterial activity of complement, antibodies, and lactoferrin and transferrin in bovine colostrum. Ann Rech Vet. 1978;9(2):287–294. [PubMed] [Google Scholar]
  9. Bullen J. J., Rogers H. J., Leigh L. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Br Med J. 1972 Jan 8;1(5792):69–75. doi: 10.1136/bmj.1.5792.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. CAVELL P. A., WIDDOWSON E. M. INTAKES AND EXCRETIONS OF IRON, COPPER, AND ZINC IN THE NEONATAL PERIOD. Arch Dis Child. 1964 Oct;39:496–501. doi: 10.1136/adc.39.207.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Conrad M. E., Weintraub L. R., Sears D. A., Crosby W. H. Absorption of hemoglobin iron. Am J Physiol. 1966 Nov;211(5):1123–1130. doi: 10.1152/ajplegacy.1966.211.5.1123. [DOI] [PubMed] [Google Scholar]
  12. Ezekiel E. Intestinal iron absorption by neonates and some factors affecting it. J Lab Clin Med. 1967 Jul;70(1):138–149. [PubMed] [Google Scholar]
  13. Griffiths E., Humphreys J. Bacteriostatic effect of human milk and bovine colostrum on Escherichia coli: importance of bicarbonate. Infect Immun. 1977 Feb;15(2):396–401. doi: 10.1128/iai.15.2.396-401.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hadorn B., Zoppi G., Shmerling D. H., Prader A., McIntyre I., Anderson C. M. Quantitative assessment of exocrine pancreatic function in infants and children. J Pediatr. 1968 Jul;73(1):39–50. doi: 10.1016/s0022-3476(68)80037-x. [DOI] [PubMed] [Google Scholar]
  15. Kirkpatrick C. H., Green I., Rich R. R., Schade A. L. Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: relation to host-defense mechanisms in chronic mucocutaneous candidiasis. J Infect Dis. 1971 Dec;124(6):539–544. doi: 10.1093/infdis/124.6.539. [DOI] [PubMed] [Google Scholar]
  16. LASKOWSKI M., Jr, LASKOWSKI M. Crystalline trypsin inhibitor from colostrum. J Biol Chem. 1951 Jun;190(2):563–573. [PubMed] [Google Scholar]
  17. Law B. A., Reiter B. The isolation and bacteriostatic properties of lactoferrin from bovine milk whey. J Dairy Res. 1977 Oct;44(3):595–599. doi: 10.1017/s0022029900020550. [DOI] [PubMed] [Google Scholar]
  18. Lindberg T. Proteolytic activity in duodenal juice in infants, children, and adults. Acta Paediatr Scand. 1974 Nov;63(6):805–808. doi: 10.1111/j.1651-2227.1974.tb04867.x. [DOI] [PubMed] [Google Scholar]
  19. MASON S. Some aspects of gastric function in the newborn. Arch Dis Child. 1962 Aug;37:387–391. doi: 10.1136/adc.37.194.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Masson P. L., Heremans J. F. Lactoferrin in milk from different species. Comp Biochem Physiol B. 1971 May 15;39(1):119–129. doi: 10.1016/0305-0491(71)90258-6. [DOI] [PubMed] [Google Scholar]
  21. Masson P. L., Heremans J. F. Metal-combining properties of human lactoferrin (red milk protein). 1. The involvement of bicarbonate in the reaction. Eur J Biochem. 1968 Dec 5;6(4):579–584. doi: 10.1111/j.1432-1033.1968.tb00484.x. [DOI] [PubMed] [Google Scholar]
  22. Masson P. L., Heremans J. F., Prignot J. J., Wauters G. Immunohistochemical localization and bacteriostatic properties of an iron-binding protein from bronchial mucus. Thorax. 1966 Nov;21(6):538–544. doi: 10.1136/thx.21.6.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Masson P. L., Heremans J. F., Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med. 1969 Sep 1;130(3):643–658. doi: 10.1084/jem.130.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McMillan J. A., Landaw S. A., Oski F. A. Iron sufficiency in breast-fed infants and the availability of iron from human milk. Pediatrics. 1976 Nov;58(5):686–691. [PubMed] [Google Scholar]
  25. McMillan J. A., Oski F. A., Lourie G., Tomarelli R. M., Landaw S. A. Iron absorption from human milk, simulated human milk, and proprietary formulas. Pediatrics. 1977 Dec;60(6):896–900. [PubMed] [Google Scholar]
  26. Neffgen J. F., Rakusan K. Iron supplementation in suckling rats: its effect on the heart. Recent Adv Stud Cardiac Struct Metab. 1975;10:707–716. [PubMed] [Google Scholar]
  27. Oram J. D., Reiter B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim Biophys Acta. 1968 Dec 23;170(2):351–365. doi: 10.1016/0304-4165(68)90015-9. [DOI] [PubMed] [Google Scholar]
  28. Parry R. M., Jr, Brown E. M. Lactoferrin conformation and metal binding properties. Adv Exp Med Biol. 1974;48(0):141–160. doi: 10.1007/978-1-4684-0943-7_8. [DOI] [PubMed] [Google Scholar]
  29. Pedersen V. Barkholt, Keil-Dlouhá V., V, Keil B. On the properties of trypsin inhibitors from human and bovine colostrum. FEBS Lett. 1971 Sep 15;17(1):23–26. doi: 10.1016/0014-5793(71)80554-9. [DOI] [PubMed] [Google Scholar]
  30. Pitt J., Barlow B., Heird W. C. Protection against experimental necrotizing enterocolitis by maternal milk. I. Role of milk leukocytes. Pediatr Res. 1977 Aug;11(8):906–909. doi: 10.1203/00006450-197708000-00011. [DOI] [PubMed] [Google Scholar]
  31. Piñeiro A., Ortega F., Uriel J. Trypsin inhibitor from cow colostrum. Isolation, electrophoretic characterization and immunologic properties. Biochim Biophys Acta. 1975 Jan 30;379(1):201–206. doi: 10.1016/0005-2795(75)90023-9. [DOI] [PubMed] [Google Scholar]
  32. Querinjean P., Masson P. L., Heremans J. F. Molecular weight, single-chain structure and amino acid composition of human lactoferrin. Eur J Biochem. 1971 Jun 11;20(3):420–425. doi: 10.1111/j.1432-1033.1971.tb01408.x. [DOI] [PubMed] [Google Scholar]
  33. Reiter B., Brock J. H., Steel E. D. Inhibition of Escherichia coli by bovine colostrum and post-colostral milk. II. The bacteriostatic effect of lactoferrin on a serum susceptible and serum resistant strain of E. coli. Immunology. 1975 Jan;28(1):83–95. [PMC free article] [PubMed] [Google Scholar]
  34. Reiter B. Review of nonspecific antimicrobial factors in colostrum. Ann Rech Vet. 1978;9(2):205–224. [PubMed] [Google Scholar]
  35. Rogers H. J. Iron-Binding Catechols and Virulence in Escherichia coli. Infect Immun. 1973 Mar;7(3):445–456. doi: 10.1128/iai.7.3.445-456.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Saarinen U. M., Siimes M. A., Dallman P. R. Iron absorption in infants: high bioavailability of breast milk iron as indicated by the extrinsic tag method of iron absorption and by the concentration of serum ferritin. J Pediatr. 1977 Jul;91(1):36–39. doi: 10.1016/s0022-3476(77)80439-3. [DOI] [PubMed] [Google Scholar]
  37. Sijpesteijn A. K. Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. Antonie Van Leeuwenhoek. 1970;36(3):335–348. doi: 10.1007/BF02069035. [DOI] [PubMed] [Google Scholar]
  38. Spik G., Cheron A., Montreuil J., Dolby J. M. Bacteriostasis of a milk-sensitive strain of Escherichia coli by immunoglobulins and iron-binding proteins in association. Immunology. 1978 Oct;35(4):663–671. [PMC free article] [PubMed] [Google Scholar]
  39. Weinberg E. D. Iron and infection. Microbiol Rev. 1978 Mar;42(1):45–66. doi: 10.1128/mr.42.1.45-66.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Weiner R. E., Szuchet S. The molecular weight of bovine lactoferrin. Biochim Biophys Acta. 1975 May 30;393(1):143–147. doi: 10.1016/0005-2795(75)90224-x. [DOI] [PubMed] [Google Scholar]
  41. Wiel-Korstanje JA van D., de Vries W. Cytochrome synthesis by bifidobacterium during growth in media supplemented with blood. J Gen Microbiol. 1973 Apr;75(2):417–419. doi: 10.1099/00221287-75-2-417. [DOI] [PubMed] [Google Scholar]
  42. de Vet B. J., van Gool J. Lactoferrin and iron absorption in the small intestine. Acta Med Scand. 1974 Nov;196(5):393–402. doi: 10.1111/j.0954-6820.1974.tb01030.x. [DOI] [PubMed] [Google Scholar]
  43. van Vugt H., van Gool J., Ladiges N. C., Boers W. Lacoferrin in rabbit bile: its relation to iron metabolism. Q J Exp Physiol Cogn Med Sci. 1975 Apr;60(2):79–88. doi: 10.1113/expphysiol.1975.sp002305. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES