Abstract
TOC-39, a new parenteral cephalosporin, is a hydroxyimino-type cephem antibiotic with vinylthio-pyridyl moiety at the 3 position. TOC-39 was evaluated for antibacterial activity against various clinically isolated strains. TOC-39 had excellent activity, stronger than that of methicillin, oxacillin, the cephalosporins tested, imipenem, gentamicin, minocycline, tobramycin, ofloxacin, and ciprofloxacin against methicillin-resistant Staphylococcus aureus (MRSA) and had an MIC comparable to that of vancomycin (the MICs of TOC-39 and vancomycin for 90% of the strains tested were 3.13 and 1.56 micrograms/ml, respectively). Against Enterococcus faecalis strains, which are resistant to cephalosporins, TOC-39 was twice as active as ampicillin. Against methicillin-susceptible S. aureus, coagulase-negative Staphylococcus spp., and Streptococcus pneumoniae, TOC-39 was twice as active as or more active than cefotiam, ceftazidime, flomoxef, and cefpirome. Against Streptococcus pyogenes, TOC-39 was superior to cefotiam, ceftazidime, and flomoxef and was similar to cefpirome. In addition, the activity of TOC-39 was equal to or greater than that of cefotiam, ceftazidime, flomoxef, and cefpirome against Haemophilus influenzae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Morganella morganii. In terms of bactericidal effect against MRSA, TOC-39 was superior to vancomycin. No mutant resistant to TOC-39 or vancomycin was obtained from susceptible MRSA strains. In murine systemic infection models, TOC-39 showed potent activity against S. aureus and E. coli. Against highly MRSA, the activity of TOC-39 was comparable to that of vancomycin.
Full Text
The Full Text of this article is available as a PDF (239.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Collins J. K., Mader J. T., Kelly M. T. Resistance of methicillin-resistant staphylococcus aureus to third-generation cephalosporins. J Infect Dis. 1983 Mar;147(3):591–591. doi: 10.1093/infdis/147.3.591. [DOI] [PubMed] [Google Scholar]
- Farber B. F., Moellering R. C., Jr Retrospective study of the toxicity of preparations of vancomycin from 1974 to 1981. Antimicrob Agents Chemother. 1983 Jan;23(1):138–141. doi: 10.1128/aac.23.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster J. K., Lentino J. R., Strodtman R., DiVincenzo C. Comparison of in vitro activity of quinolone antibiotics and vancomycin against gentamicin- and methicillin-resistant Staphylococcus aureus by time-kill kinetic studies. Antimicrob Agents Chemother. 1986 Dec;30(6):823–827. doi: 10.1128/aac.30.6.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frongillo R. F., Bianchi P., Moretti A., Pasticci M. B., Ripa S., Pauluzzi S. Cross-resistance between methicillin and cephalosporins for staphylococci: a general assumption not true for cefamandole. Antimicrob Agents Chemother. 1984 May;25(5):666–668. doi: 10.1128/aac.25.5.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu K. P., Foleno B. D., Lafredo S. C., LoCoco J. M., Isaacson D. M. In vitro and in vivo antibacterial activities of FK037, a novel parenteral broad-spectrum cephalosporin. Antimicrob Agents Chemother. 1993 Feb;37(2):301–307. doi: 10.1128/aac.37.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartman B. J., Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol. 1984 May;158(2):513–516. doi: 10.1128/jb.158.2.513-516.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hori S., Ohshita Y., Utsui Y., Hiramatsu K. Sequential acquisition of norfloxacin and ofloxacin resistance by methicillin-resistant and -susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 1993 Nov;37(11):2278–2284. doi: 10.1128/aac.37.11.2278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwahi T., Okonogi K., Yamazaki T., Shiki S., Kondo M., Miyake A., Imada A. In vitro and in vivo activities of SCE-2787, a new parenteral cephalosporin with a broad antibacterial spectrum. Antimicrob Agents Chemother. 1992 Jul;36(7):1358–1366. doi: 10.1128/aac.36.7.1358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones R. N., Thornsberry C., Barry A. L. In vitro evaluation of HR810, a new wide-spectrum aminothiazolyl alpha-methoxyimino cephalosporin. Antimicrob Agents Chemother. 1984 Jun;25(6):710–718. doi: 10.1128/aac.25.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine D. P., Fromm B. S., Reddy B. R. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann Intern Med. 1991 Nov 1;115(9):674–680. doi: 10.7326/0003-4819-115-9-674. [DOI] [PubMed] [Google Scholar]
- Maple P. A., Hamilton-Miller J. M., Brumfitt W. Differing activities of quinolones against ciprofloxacin-susceptible and ciprofloxacin-resistant, methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1991 Feb;35(2):345–350. doi: 10.1128/aac.35.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maple P. A., Hamilton-Miller J. M., Brumfitt W. World-wide antibiotic resistance in methicillin-resistant Staphylococcus aureus. Lancet. 1989 Mar 11;1(8637):537–540. doi: 10.1016/s0140-6736(89)90076-7. [DOI] [PubMed] [Google Scholar]
- Shalit I., Berger S. A., Gorea A., Frimerman H. Widespread quinolone resistance among methicillin-resistant Staphylococcus aureus isolates in a general hospital. Antimicrob Agents Chemother. 1989 Apr;33(4):593–594. doi: 10.1128/aac.33.4.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorrell T. C., Packham D. R., Shanker S., Foldes M., Munro R. Vancomycin therapy for methicillin-resistant Staphylococcus aureus. Ann Intern Med. 1982 Sep;97(3):344–350. doi: 10.7326/0003-4819-97-3-344. [DOI] [PubMed] [Google Scholar]
- Tonin E., Tomasz A. Beta-lactam-specific resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 1986 Oct;30(4):577–583. doi: 10.1128/aac.30.4.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsuji T., Satoh H., Narisada M., Hamashima Y., Yoshida T. Synthesis and antibacterial activity of 6315-S, a new member of the oxacephem antibiotic. J Antibiot (Tokyo) 1985 Apr;38(4):466–476. doi: 10.7164/antibiotics.38.466. [DOI] [PubMed] [Google Scholar]
- Ubukata K., Nonoguchi R., Matsuhashi M., Song M. D., Konno M. Restriction maps of the regions coding for methicillin and tobramycin resistances on chromosomal DNA in methicillin-resistant staphylococci. Antimicrob Agents Chemother. 1989 Sep;33(9):1624–1626. doi: 10.1128/aac.33.9.1624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Utsui Y., Yokota T. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1985 Sep;28(3):397–403. doi: 10.1128/aac.28.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varaldo P. E., Debbia E., Schito G. C. In vitro activity of teichomycin and vancomycin alone and in combination with rifampin. Antimicrob Agents Chemother. 1983 Mar;23(3):402–406. doi: 10.1128/aac.23.3.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida T., Hiramatsu K. Potent in vitro bactericidal activity of polymyxin B against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol Immunol. 1993;37(11):853–859. doi: 10.1111/j.1348-0421.1993.tb01716.x. [DOI] [PubMed] [Google Scholar]