Abstract
Device-related infections are difficult to treat with antibiotics alone. Standard susceptibility tests do not correlate with treatment success. Therefore, the utility of a pharmacokinetic in vitro model has been evaluated in comparison with the tissue-cage infection model in guinea pigs. The bactericidal activity of 28 treatment regimens has been studied by using three different test strains. In vitro efficacy was defined as reduction in the number of suspended or adherent bacteria, and in vivo efficacy was defined as reduction in the number of bacteria in tissue-cage fluid. Test results between the two models (in vivo and in vitro) correlated well, with correlation coefficients of 0.85 for in vivo efficacy versus in vitro efficacy against suspended bacteria and 0.72 for in vivo efficacy versus in vitro efficacy against adherent bacteria (P < 0.05) for Staphylococcus aureus, 0.96 and 0.82 (P < 0.05) for Staphylococcus epidermidis, and 0.89 and 0.97 for Escherichia coli, respectively. In contrast, standard susceptibility tests, ratios of MICs to trough or peak levels, ratios of the area under the curve to the MIC, or time above the MIC were not predictive for therapeutic outcome in either the in vitro or in vivo model. In both models, the bactericidal activity levels with combination regimens were significantly higher than those with single-drug regimens (P < 0.001). Furthermore, rifampin combinations with either vancomycin, teicoplanin, fleroxacin, or ciprofloxacin were significantly more bactericidal against adherent bacteria than netilmicin combinations with vancomycin or daptomycin (P < 0.01). Thus, in vivo verification of the pharmacokinetic in vitro model correlated well with the animal model. The in vitro model offers an alternative to ther animal model in experiments that screen and assess antibiotic regimens against device-related infections.
Full Text
The Full Text of this article is available as a PDF (239.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartoloni A., Colao M. G., Orsi A., Dei R., Giganti E., Parenti F. In-vitro activity of vancomycin, teicoplanin, daptomycin, ramoplanin, MDL 62873 and other agents against staphylococci, enterococci and Clostridium difficile. J Antimicrob Chemother. 1990 Nov;26(5):627–633. doi: 10.1093/jac/26.5.627. [DOI] [PubMed] [Google Scholar]
- Bayston R., Rodgers J. Production of extra-cellular slime by Staphylococcus epidermidis during stationary phase of growth: its association with adherence to implantable devices. J Clin Pathol. 1990 Oct;43(10):866–870. doi: 10.1136/jcp.43.10.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaser J., Stone B. B., Groner M. C., Zinner S. H. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother. 1987 Jul;31(7):1054–1060. doi: 10.1128/aac.31.7.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canawati H. N., Tuddenham W. J., Sapico F. L., Montgomerie J. Z., Aeilts G. D. Failure of rifampin to eradicate methicillin-resistant Staphylococcus aureus colonization. Clin Ther. 1982;4(6):526–531. [PubMed] [Google Scholar]
- Chamovitz B., Bryant R. E., Gilbert D. N., Hartstein A. I. Prosthetic valve endocarditis caused by Staphylococcus epidermidis. Development of rifampin resistance during vancomycin and rifampin therapy. JAMA. 1985 May 17;253(19):2867–2868. [PubMed] [Google Scholar]
- Christensen G. D., Simpson W. A., Bisno A. L., Beachey E. H. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun. 1982 Jul;37(1):318–326. doi: 10.1128/iai.37.1.318-326.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christensen G. D., Simpson W. A., Bisno A. L., Beachey E. H. Experimental foreign body infections in mice challenged with slime-producing Staphylococcus epidermidis. Infect Immun. 1983 Apr;40(1):407–410. doi: 10.1128/iai.40.1.407-410.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clumeck N., Marcelis L., Amiri-Lamraski M. H., Gordts B. Treatment of severe staphylococcal infections with a rifampicin-minocycline association. J Antimicrob Chemother. 1984 Jun;13 (Suppl 100):17–22. doi: 10.1093/jac/13.suppl_c.17. [DOI] [PubMed] [Google Scholar]
- Drusano G. L. Role of pharmacokinetics in the outcome of infections. Antimicrob Agents Chemother. 1988 Mar;32(3):289–297. doi: 10.1128/aac.32.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gristina A. G., Naylor P., Myrvik Q. Infections from biomaterials and implants: a race for the surface. Med Prog Technol. 1988;14(3-4):205–224. [PubMed] [Google Scholar]
- Lorian V., Burns L. Predictive value of susceptibility tests for the outcome of antibacterial therapy. J Antimicrob Chemother. 1990 Jan;25(1):175–181. doi: 10.1093/jac/25.1.175. [DOI] [PubMed] [Google Scholar]
- Lowy F. D., Hammer S. M. Staphylococcus epidermidis infections. Ann Intern Med. 1983 Dec;99(6):834–839. doi: 10.7326/0003-4819-99-6-834. [DOI] [PubMed] [Google Scholar]
- Mirchamsy H. Measles immunization in Iran. Rev Infect Dis. 1983 May-Jun;5(3):491–494. doi: 10.1093/clinids/5.3.491. [DOI] [PubMed] [Google Scholar]
- Moffie B. G., Mouton R. P. Sensitivity and resistance of Legionella pneumophila to some antibiotics and combinations of antibiotics. J Antimicrob Chemother. 1988 Oct;22(4):457–462. doi: 10.1093/jac/22.4.457. [DOI] [PubMed] [Google Scholar]
- Moore R. D., Lietman P. S., Smith C. R. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987 Jan;155(1):93–99. doi: 10.1093/infdis/155.1.93. [DOI] [PubMed] [Google Scholar]
- Norden C. W. Experimental osteomyelitis. IV. Therapeutic trials with rifampin alone and in combination with gentamicin, sisomicin, and cephalothin. J Infect Dis. 1975 Nov;132(5):493–499. doi: 10.1093/infdis/132.5.493. [DOI] [PubMed] [Google Scholar]
- Tebas P., Martinez Ruiz R., Roman F., Mendaza P., Rodriguez Diaz J. C., Daza R., de Letona J. M. Early resistance to rifampin and ciprofloxacin in the treatment of right-sided Staphylococcus aureus endocarditis. J Infect Dis. 1991 Jan;163(1):204–205. doi: 10.1093/infdis/163.1.204-a. [DOI] [PubMed] [Google Scholar]
- Vergères P., Blaser J. Amikacin, ceftazidime, and flucloxacillin against suspended and adherent Pseudomonas aeruginosa and Staphylococcus epidermidis in an in vitro model of infection. J Infect Dis. 1992 Feb;165(2):281–289. doi: 10.1093/infdis/165.2.281. [DOI] [PubMed] [Google Scholar]
- Vogelman B., Gudmundsson S., Leggett J., Turnidge J., Ebert S., Craig W. A. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis. 1988 Oct;158(4):831–847. doi: 10.1093/infdis/158.4.831. [DOI] [PubMed] [Google Scholar]
- Widmer A. F., Colombo V. E., Gächter A., Thiel G., Zimmerli W. Salmonella infection in total hip replacement: tests to predict the outcome of antimicrobial therapy. Scand J Infect Dis. 1990;22(5):611–618. doi: 10.3109/00365549009027105. [DOI] [PubMed] [Google Scholar]
- Widmer A. F., Frei R., Rajacic Z., Zimmerli W. Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis. 1990 Jul;162(1):96–102. doi: 10.1093/infdis/162.1.96. [DOI] [PubMed] [Google Scholar]
- Widmer A. F., Wiestner A., Frei R., Zimmerli W. Killing of nongrowing and adherent Escherichia coli determines drug efficacy in device-related infections. Antimicrob Agents Chemother. 1991 Apr;35(4):741–746. doi: 10.1128/aac.35.4.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiebers D. O., Leaning J., White R. D. Animal protection and medical science. Lancet. 1994 Apr 9;343(8902):902–904. doi: 10.1016/s0140-6736(94)90013-2. [DOI] [PubMed] [Google Scholar]
- Zimmerli W., Lew P. D., Waldvogel F. A. Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. J Clin Invest. 1984 Apr;73(4):1191–1200. doi: 10.1172/JCI111305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerli W., Waldvogel F. A., Vaudaux P., Nydegger U. E. Pathogenesis of foreign body infection: description and characteristics of an animal model. J Infect Dis. 1982 Oct;146(4):487–497. doi: 10.1093/infdis/146.4.487. [DOI] [PubMed] [Google Scholar]