Abstract
To better understand the antileishmanial effects of antimonial agents we synthesized complexes of tri- and pentavalent antimony with mannan. The 50% inhibitory concentrations (IC50s) of these agents, along with those of potassium antimony tartrate [Sb(III)] and sodium stibogluconate [Sb(V)], were determined for promastigotes and intramacrophage amastigotes. The trivalent antimonial agents were more potent than the pentavalent agents. Although the IC50s were 60- to more-than-600-fold higher for promastigotes than for amastigotes, similar intracellular antimony concentrations in both life forms were measured after incubation with all four drugs at their respective IC50s. Macrophages accumulated antimony during a 4-h exposure that was retained intracellularly for at least 3 days. Amastigotes inside macrophages had a higher antimony content 6 days after a single 4-h treatment than they did immediately after treatment, suggesting that macrophages serve as a reservoir for antimonial agents and prolong parasite exposure. Macrophages concentrated antimony from the medium with potassium antimony tartrate, trivalent antimony-mannan, and pentavalent antimony-mannan treatments. N-Acetylcysteine antagonized the antileishmanial effects of these three drugs against intracellular amastigotes; in contrast, it had minimal effects on the action of sodium stibogluconate.
Full Text
The Full Text of this article is available as a PDF (228.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berman J. D. Chemotherapy for leishmaniasis: biochemical mechanisms, clinical efficacy, and future strategies. Rev Infect Dis. 1988 May-Jun;10(3):560–586. doi: 10.1093/clinids/10.3.560. [DOI] [PubMed] [Google Scholar]
- Berman J. D., Gallalee J. F., Gallalee J. V. Pharmacokinetics of pentavalent antimony (Pentostam) in hamsters. Am J Trop Med Hyg. 1988 Jul;39(1):41–45. doi: 10.4269/ajtmh.1988.39.41. [DOI] [PubMed] [Google Scholar]
- Berman J. D., Gallalee J. V., Hansen B. D. Leishmania mexicana: uptake of sodium stibogluconate (Pentostam) and pentamidine by parasite and macrophages. Exp Parasitol. 1987 Aug;64(1):127–131. doi: 10.1016/0014-4894(87)90018-x. [DOI] [PubMed] [Google Scholar]
- Berman J. D., Grogl M. Leishmania mexicana: chemistry and biochemistry of sodium stibogluconate (Pentostam). Exp Parasitol. 1988 Oct;67(1):96–103. doi: 10.1016/0014-4894(88)90012-4. [DOI] [PubMed] [Google Scholar]
- Cantos G., Barbieri C. L., Iacomini M., Gorin P. A., Travassos L. R. Synthesis of antimony complexes of yeast mannan and mannan derivatives and their effect on Leishmania-infected macrophages. Biochem J. 1993 Jan 1;289(Pt 1):155–160. doi: 10.1042/bj2890155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter K. C., Alexander J., Baillie A. J., Dolan T. F. Visceral leishmaniasis: resistance to reinfection in the liver following chemotherapy in the BALB/c mouse. Exp Parasitol. 1989 May;68(4):375–381. doi: 10.1016/0014-4894(89)90122-7. [DOI] [PubMed] [Google Scholar]
- Chulay J. D., Fleckenstein L., Smith D. H. Pharmacokinetics of antimony during treatment of visceral leishmaniasis with sodium stibogluconate or meglumine antimoniate. Trans R Soc Trop Med Hyg. 1988;82(1):69–72. [PubMed] [Google Scholar]
- Damper D., Patton C. L. Pentamidine transport and sensitivity in brucei-group trypanosomes. J Protozool. 1976 May;23(2):349–356. doi: 10.1111/j.1550-7408.1976.tb03787.x. [DOI] [PubMed] [Google Scholar]
- Fairlamb A. H., Henderson G. B., Cerami A. Trypanothione is the primary target for arsenical drugs against African trypanosomes. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2607–2611. doi: 10.1073/pnas.86.8.2607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glaser T. A., Wells S. J., Spithill T. W., Pettitt J. M., Humphris D. C., Mukkada A. J. Leishmania major and L. donovani: a method for rapid purification of amastigotes. Exp Parasitol. 1990 Oct;71(3):343–345. doi: 10.1016/0014-4894(90)90039-f. [DOI] [PubMed] [Google Scholar]
- Jennings F. W. Chemotherapy of trypanosomiasis: the potentiation of antimonial compounds by difluoromethylornithine (DFMO). Trop Med Parasitol. 1991 Jun;42(2):135–138. [PubMed] [Google Scholar]
- Mosser D. M. An assay to quantitate the binding of Leishmania amastigotes to macrophages. J Immunol Methods. 1990 Jul 3;130(2):235–242. doi: 10.1016/0022-1759(90)90053-x. [DOI] [PubMed] [Google Scholar]
- Mottram J. C., Coombs G. H. Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals. Exp Parasitol. 1985 Apr;59(2):151–160. doi: 10.1016/0014-4894(85)90067-0. [DOI] [PubMed] [Google Scholar]
- Murray H. W. Effect of continuous administration of interferon-gamma in experimental visceral leishmaniasis. J Infect Dis. 1990 May;161(5):992–994. doi: 10.1093/infdis/161.5.992. [DOI] [PubMed] [Google Scholar]
- Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts W. L., Rainey P. M. Antileishmanial activity of sodium stibogluconate fractions. Antimicrob Agents Chemother. 1993 Sep;37(9):1842–1846. doi: 10.1128/aac.37.9.1842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts W. L., Rainey P. M. Antimony quantification in Leishmania by electrothermal atomic absorption spectroscopy. Anal Biochem. 1993 May 15;211(1):1–6. doi: 10.1006/abio.1993.1223. [DOI] [PubMed] [Google Scholar]
- Steck E. A. The leishmaniases. Prog Drug Res. 1974;18:289–351. doi: 10.1007/978-3-0348-7087-0_22. [DOI] [PubMed] [Google Scholar]
- Wardlaw S. C., Levine R. A. Quantitative buffy coat analysis. A new laboratory tool functioning as a screening complete blood cell count. JAMA. 1983 Feb 4;249(5):617–620. doi: 10.1001/jama.249.5.617. [DOI] [PubMed] [Google Scholar]