Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Jun;39(6):1306–1313. doi: 10.1128/aac.39.6.1306

Genetic analysis of clinical isolates of Streptococcus pneumoniae with high-level resistance to expanded-spectrum cephalosporins.

T J Coffey 1, M Daniels 1, L K McDougal 1, C G Dowson 1, F C Tenover 1, B G Spratt 1
PMCID: PMC162732  PMID: 7574521

Abstract

Streptococcus pneumoniae CS109 and CS111 were isolated in the United States in 1991 and have high levels of resistance to expanded-spectrum cephalosporins (MICs of 8 and 32 micrograms of cefotaxime per ml, respectively). CS109, but not CS111, also showed high-level resistance to penicillin. As both strains expressed the serotype 23F capsule, were very closely related in overall genotype, and possessed identical or closely related mosaic pbp1a, pbp2x, and pbp2b genes, it is likely that they have arisen from a recent common ancestor. High-level resistance to expanded-spectrum cephalosporins was entirely due to alterations of penicillin-binding proteins (PBPs) 1a and 2x, since a mixture of the cloned pbp1a and pbp2x genes from the resistant strains could transform the susceptible strain R6 to the full level of cephalosporin resistance of the clinical isolates. Both PBP1a and PBP2x of these strains were more resistant to inhibition by cephalosporins than those of typical highly penicillin-resistant isolates. The pbp1a genes of CS109 and CS111 were identical in sequence, and the fourfold difference in their levels of resistance to cephalosporins was due to a Thr-550-->Ala substitution at the residue following the conserved Lys-Ser-Gly motif of PBP2x. This substitution was also the major cause of the 16-fold-lower resistance of CS111 to penicillin. The pbp2x gene of CS111, in an appropriate genetic background, could provide resistance to 16 micrograms of cefotaxime per ml but only to 0.12 microgram of benzylpenicillin per ml. Removal of the codon 550 mutation resulted in a pbp2x gene that provided resistance to 4 microgram of cefotaxime per ml and 4 microgram of benzylpenicillin per ml. The Thr-550-->Ala substitution in CS111 therefore appears to provide increased resistance to expanded-spectrum cephalosporins but a loss of resistance to penicillin.

Full Text

The Full Text of this article is available as a PDF (623.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appelbaum P. C. Antimicrobial resistance in Streptococcus pneumoniae: an overview. Clin Infect Dis. 1992 Jul;15(1):77–83. doi: 10.1093/clinids/15.1.77. [DOI] [PubMed] [Google Scholar]
  2. Barcus V. A., Ghanekar K., Yeo M., Coffey T. J., Dowson C. G. Genetics of high level penicillin resistance in clinical isolates of Streptococcus pneumoniae. FEMS Microbiol Lett. 1995 Mar 1;126(3):299–303. doi: 10.1111/j.1574-6968.1995.tb07433.x. [DOI] [PubMed] [Google Scholar]
  3. Bradley J. S., Connor J. D. Ceftriaxone failure in meningitis caused by Streptococcus pneumoniae with reduced susceptibility to beta-lactam antibiotics. Pediatr Infect Dis J. 1991 Nov;10(11):871–873. [PubMed] [Google Scholar]
  4. Coffey T. J., Dowson C. G., Daniels M., Zhou J., Martin C., Spratt B. G., Musser J. M. Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae. Mol Microbiol. 1991 Sep;5(9):2255–2260. doi: 10.1111/j.1365-2958.1991.tb02155.x. [DOI] [PubMed] [Google Scholar]
  5. Collatz E., Labia R., Gutmann L. Molecular evolution of ubiquitous beta-lactamases towards extended-spectrum enzymes active against newer beta-lactam antibiotics. Mol Microbiol. 1990 Oct;4(10):1615–1620. doi: 10.1111/j.1365-2958.1990.tb00537.x. [DOI] [PubMed] [Google Scholar]
  6. Dowson C. G., Coffey T. J., Kell C., Whiley R. A. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Mol Microbiol. 1993 Aug;9(3):635–643. doi: 10.1111/j.1365-2958.1993.tb01723.x. [DOI] [PubMed] [Google Scholar]
  7. Dowson C. G., Coffey T. J., Spratt B. G. Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to beta-lactam antibiotics. Trends Microbiol. 1994 Oct;2(10):361–366. doi: 10.1016/0966-842x(94)90612-2. [DOI] [PubMed] [Google Scholar]
  8. Dowson C. G., Hutchison A., Brannigan J. A., George R. C., Hansman D., Liñares J., Tomasz A., Smith J. M., Spratt B. G. Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8842–8846. doi: 10.1073/pnas.86.22.8842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dowson C. G., Johnson A. P., Cercenado E., George R. C. Genetics of oxacillin resistance in clinical isolates of Streptococcus pneumoniae that are oxacillin resistant and penicillin susceptible. Antimicrob Agents Chemother. 1994 Jan;38(1):49–53. doi: 10.1128/aac.38.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Figueiredo A. M., Connor J. D., Severin A., Vaz Pato M. V., Tomasz A. A pneumococcal clinical isolate with high-level resistance to cefotaxime and ceftriaxone. Antimicrob Agents Chemother. 1992 Apr;36(4):886–889. doi: 10.1128/aac.36.4.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gasc A. M., Kauc L., Barraillé P., Sicard M., Goodgal S. Gene localization, size, and physical map of the chromosome of Streptococcus pneumoniae. J Bacteriol. 1991 Nov;173(22):7361–7367. doi: 10.1128/jb.173.22.7361-7367.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hakenbeck R., Tarpay M., Tomasz A. Multiple changes of penicillin-binding proteins in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1980 Mar;17(3):364–371. doi: 10.1128/aac.17.3.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hakenbeck R., Tornette S., Adkinson N. F. Interaction of non-lytic beta-lactams with penicillin-binding proteins in Streptococcus pneumoniae. J Gen Microbiol. 1987 Mar;133(3):755–760. doi: 10.1099/00221287-133-3-755. [DOI] [PubMed] [Google Scholar]
  14. Joris B., Ghuysen J. M., Dive G., Renard A., Dideberg O., Charlier P., Frère J. M., Kelly J. A., Boyington J. C., Moews P. C. The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem J. 1988 Mar 1;250(2):313–324. doi: 10.1042/bj2500313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kell C. M., Jordens J. Z., Daniels M., Coffey T. J., Bates J., Paul J., Gilks C., Spratt B. G. Molecular epidemiology of penicillin-resistant pneumococci isolated in Nairobi, Kenya. Infect Immun. 1993 Oct;61(10):4382–4391. doi: 10.1128/iai.61.10.4382-4391.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klugman K. P. Pneumococcal resistance to antibiotics. Clin Microbiol Rev. 1990 Apr;3(2):171–196. doi: 10.1128/cmr.3.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koornhof H. J., Wasas A., Klugman K. Antimicrobial resistance in Streptococcus pneumoniae: a South African perspective. Clin Infect Dis. 1992 Jul;15(1):84–94. doi: 10.1093/clinids/15.1.84. [DOI] [PubMed] [Google Scholar]
  18. Laible G., Hakenbeck R. Five independent combinations of mutations can result in low-affinity penicillin-binding protein 2x of Streptococcus pneumoniae. J Bacteriol. 1991 Nov;173(21):6986–6990. doi: 10.1128/jb.173.21.6986-6990.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laible G., Spratt B. G., Hakenbeck R. Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol Microbiol. 1991 Aug;5(8):1993–2002. doi: 10.1111/j.1365-2958.1991.tb00821.x. [DOI] [PubMed] [Google Scholar]
  20. Lefevre J. C., Faucon G., Sicard A. M., Gasc A. M. DNA fingerprinting of Streptococcus pneumoniae strains by pulsed-field gel electrophoresis. J Clin Microbiol. 1993 Oct;31(10):2724–2728. doi: 10.1128/jcm.31.10.2724-2728.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liñares J., Pallares R., Alonso T., Perez J. L., Ayats J., Gudiol F., Viladrich P. F., Martin R. Trends in antimicrobial resistance of clinical isolates of Streptococcus pneumoniae in Bellvitge Hospital, Barcelona, Spain (1979-1990). Clin Infect Dis. 1992 Jul;15(1):99–105. doi: 10.1093/clinids/15.1.99. [DOI] [PubMed] [Google Scholar]
  22. Martin C., Sibold C., Hakenbeck R. Relatedness of penicillin-binding protein 1a genes from different clones of penicillin-resistant Streptococcus pneumoniae isolated in South Africa and Spain. EMBO J. 1992 Nov;11(11):3831–3836. doi: 10.1002/j.1460-2075.1992.tb05475.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marton A., Gulyas M., Munoz R., Tomasz A. Extremely high incidence of antibiotic resistance in clinical isolates of Streptococcus pneumoniae in Hungary. J Infect Dis. 1991 Mar;163(3):542–548. doi: 10.1093/infdis/163.3.542. [DOI] [PubMed] [Google Scholar]
  24. McDougal L. K., Facklam R., Reeves M., Hunter S., Swenson J. M., Hill B. C., Tenover F. C. Analysis of multiply antimicrobial-resistant isolates of Streptococcus pneumoniae from the United States. Antimicrob Agents Chemother. 1992 Oct;36(10):2176–2184. doi: 10.1128/aac.36.10.2176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Munoz R., Musser J. M., Crain M., Briles D. E., Marton A., Parkinson A. J., Sorensen U., Tomasz A. Geographic distribution of penicillin-resistant clones of Streptococcus pneumoniae: characterization by penicillin-binding protein profile, surface protein A typing, and multilocus enzyme analysis. Clin Infect Dis. 1992 Jul;15(1):112–118. doi: 10.1093/clinids/15.1.112. [DOI] [PubMed] [Google Scholar]
  26. Muñoz R., Coffey T. J., Daniels M., Dowson C. G., Laible G., Casal J., Hakenbeck R., Jacobs M., Musser J. M., Spratt B. G. Intercontinental spread of a multiresistant clone of serotype 23F Streptococcus pneumoniae. J Infect Dis. 1991 Aug;164(2):302–306. doi: 10.1093/infdis/164.2.302. [DOI] [PubMed] [Google Scholar]
  27. Muñoz R., Dowson C. G., Daniels M., Coffey T. J., Martin C., Hakenbeck R., Spratt B. G. Genetics of resistance to third-generation cephalosporins in clinical isolates of Streptococcus pneumoniae. Mol Microbiol. 1992 Sep;6(17):2461–2465. doi: 10.1111/j.1365-2958.1992.tb01422.x. [DOI] [PubMed] [Google Scholar]
  28. Sibold C., Wang J., Henrichsen J., Hakenbeck R. Genetic relationships of penicillin-susceptible and -resistant Streptococcus pneumoniae strains isolated on different continents. Infect Immun. 1992 Oct;60(10):4119–4126. doi: 10.1128/iai.60.10.4119-4126.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sloas M. M., Barrett F. F., Chesney P. J., English B. K., Hill B. C., Tenover F. C., Leggiadro R. J. Cephalosporin treatment failure in penicillin- and cephalosporin-resistant Streptococcus pneumoniae meningitis. Pediatr Infect Dis J. 1992 Aug;11(8):662–666. [PubMed] [Google Scholar]
  30. Soares S., Kristinsson K. G., Musser J. M., Tomasz A. Evidence for the introduction of a multiresistant clone of serotype 6B Streptococcus pneumoniae from Spain to Iceland in the late 1980s. J Infect Dis. 1993 Jul;168(1):158–163. doi: 10.1093/infdis/168.1.158. [DOI] [PubMed] [Google Scholar]
  31. Spratt B. G., Cromie K. D. Penicillin-binding proteins of gram-negative bacteria. Rev Infect Dis. 1988 Jul-Aug;10(4):699–711. doi: 10.1093/clinids/10.4.699. [DOI] [PubMed] [Google Scholar]
  32. Versalovic J., Kapur V., Mason E. O., Jr, Shah U., Koeuth T., Lupski J. R., Musser J. M. Penicillin-resistant Streptococcus pneumoniae strains recovered in Houston: identification and molecular characterization of multiple clones. J Infect Dis. 1993 Apr;167(4):850–856. doi: 10.1093/infdis/167.4.850. [DOI] [PubMed] [Google Scholar]
  33. Zighelboim S., Tomasz A. Penicillin-binding proteins of multiply antibiotic-resistant South African strains of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1980 Mar;17(3):434–442. doi: 10.1128/aac.17.3.434. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES