Abstract
Studies on bacterial metabolism during the postantibiotic effect (PAE) period are limited but might provide insight into the nature of the PAE. We evaluated the rate of DNA synthesis in bacteria during the PAE period after a 1-h exposure of organisms in the logarithmic growth phase to various antibiotics. Staphylococcus aureus ATCC 25923 was exposed to vancomycin, dicloxacillin, rifampin, and ciprofloxacin; Escherichia coli ATCC 25922 was exposed to gentamicin, tobramycin, rifampin, imipenem, and ciprofloxacin; and Pseudomonas aeruginosa ATCC 25783 was exposed to imipenem, tobramycin, and ciprofloxacin. DNA synthesis was determined by measuring the rate of [3H]thymidine incorporation in S. aureus and E. coli and [3H]adenine incorporation in P. aeruginosa. DNA synthesis in S. aureus was suppressed during the PAE phase with vancomycin, dicloxacillin, and rifampin, it was suppressed in E. coli with rifampin, and it was suppressed in P. aeruginosa after exposure to tobramycin. Conversely, DNA synthesis was relatively enhanced in the gram-negative bacilli after exposure to imipenem and in all three species after exposure to ciprofloxacin. However, DNA synthesis in E. coli was only minimally affected after exposure to tobramycin and gentamicin. The differences in DNA synthesis observed after exposure to various antimicrobial agents suggest multiple mechanisms for the PAE.
Full Text
The Full Text of this article is available as a PDF (276.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barmada S., Kohlhepp S., Leggett J., Dworkin R., Gilbert D. Correlation of tobramycin-induced inhibition of protein synthesis with postantibiotic effect in Escherichia coli. Antimicrob Agents Chemother. 1993 Dec;37(12):2678–2683. doi: 10.1128/aac.37.12.2678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benbrook D. M., Miller R. V. Effects of norfloxacin on DNA metabolism in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1986 Jan;29(1):1–6. doi: 10.1128/aac.29.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumberg P. M., Strominger J. L. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev. 1974 Sep;38(3):291–335. doi: 10.1128/br.38.3.291-335.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bundtzen R. W., Gerber A. U., Cohn D. L., Craig W. A. Postantibiotic suppression of bacterial growth. Rev Infect Dis. 1981 Jan-Feb;3(1):28–37. doi: 10.1093/clinids/3.1.28. [DOI] [PubMed] [Google Scholar]
- Bustamante C. I., Drusano G. L., Tatem B. A., Standiford H. C. Postantibiotic effect of imipenem on Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1984 Nov;26(5):678–682. doi: 10.1128/aac.26.5.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUBIN D. T., HANCOCK R., DAVIS B. D. THE SEQUENCE OF SOME EFFECTS OF STREPTOMYCIN IN ESCHERICHIA COLI. Biochim Biophys Acta. 1963 Aug 13;74:476–489. doi: 10.1016/0006-3002(63)91390-8. [DOI] [PubMed] [Google Scholar]
- Diver J. M., Wise R. Morphological and biochemical changes in Escherichia coli after exposure to ciprofloxacin. J Antimicrob Chemother. 1986 Nov;18 (Suppl 500):31–41. doi: 10.1093/jac/18.supplement_d.31. [DOI] [PubMed] [Google Scholar]
- Engle E. C., Manes S. H., Drlica K. Differential effects of antibiotics inhibiting gyrase. J Bacteriol. 1982 Jan;149(1):92–98. doi: 10.1128/jb.149.1.92-98.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gellert M., Mizuuchi K., O'Dea M. H., Itoh T., Tomizawa J. I. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4772–4776. doi: 10.1073/pnas.74.11.4772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert D. N. Once-daily aminoglycoside therapy. Antimicrob Agents Chemother. 1991 Mar;35(3):399–405. doi: 10.1128/aac.35.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottfredsson M., Erlendsdóttir H., Kolka R., Gudmundsson A., Gudmundsson S. Ultrastructural alterations of bacteria during the postantibiotic effect. Chemotherapy. 1993 May-Jun;39(3):153–162. doi: 10.1159/000239120. [DOI] [PubMed] [Google Scholar]
- Guan L., Blumenthal R. M., Burnham J. C. Analysis of macromolecular biosynthesis to define the quinolone-induced postantibiotic effect in Escherichia coli. Antimicrob Agents Chemother. 1992 Oct;36(10):2118–2124. doi: 10.1128/aac.36.10.2118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guan L., Burnham J. C. Postantibiotic effect of CI-960, enoxacin and ciprofloxacin on Escherichia coli: effect on morphology and haemolysin activity. J Antimicrob Chemother. 1992 May;29(5):529–538. doi: 10.1093/jac/29.5.529. [DOI] [PubMed] [Google Scholar]
- Gudmundsson A., Erlendsdottir H., Gottfredsson M., Gudmundsson S. Impact of pH and cationic supplementation on in vitro postantibiotic effect. Antimicrob Agents Chemother. 1991 Dec;35(12):2617–2624. doi: 10.1128/aac.35.12.2617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gudmundsson S., Einarsson S., Erlendsdottir H., Moffat J., Bayer W., Craig W. A. The post-antibiotic effect of antimicrobial combinations in a neutropenic murine thigh infection model. J Antimicrob Chemother. 1993 May;31 (Suppl 500):177–191. doi: 10.1093/jac/31.suppl_d.177. [DOI] [PubMed] [Google Scholar]
- Hanberger H., Nilsson L. E., Kihlström E., Maller R. Postantibiotic effect of beta-lactam antibiotics on Escherichia coli evaluated by bioluminescence assay of bacterial ATP. Antimicrob Agents Chemother. 1990 Jan;34(1):102–106. doi: 10.1128/aac.34.1.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kokjohn T. A., Miller R. V. Molecular cloning and characterization of the recA gene of Pseudomonas aeruginosa PAO. J Bacteriol. 1985 Aug;163(2):568–572. doi: 10.1128/jb.163.2.568-572.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Love P. E., Yasbin R. E. Induction of the Bacillus subtilis SOS-like response by Escherichia coli RecA protein. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5204–5208. doi: 10.1073/pnas.83.14.5204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald P. J., Craig W. A., Kunin C. M. Persistent effect of antibiotics on Staphylococcus aureus after exposure for limited periods of time. J Infect Dis. 1977 Feb;135(2):217–223. doi: 10.1093/infdis/135.2.217. [DOI] [PubMed] [Google Scholar]
- Odenholt I., Holm S. E., Cars O. Effects of benzylpenicillin on Streptococcus pyogenes during the postantibiotic phase in vitro. J Antimicrob Chemother. 1989 Aug;24(2):147–156. doi: 10.1093/jac/24.2.147. [DOI] [PubMed] [Google Scholar]
- Odenholt I., Isaksson B., Nilsson L., Cars O. Postantibiotic and bactericidal effect of imipenem against Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 1989 Feb;8(2):136–141. doi: 10.1007/BF01963897. [DOI] [PubMed] [Google Scholar]
- Prins J. M., Büller H. R., Kuijper E. J., Tange R. A., Speelman P. Once versus thrice daily gentamicin in patients with serious infections. Lancet. 1993 Feb 6;341(8841):335–339. doi: 10.1016/0140-6736(93)90137-6. [DOI] [PubMed] [Google Scholar]
- Pruul H., Lewis G., McDonald P. J. Enhanced susceptibility of gram-negative bacteria to phagocytic killing by human polymorphonuclear leucocytes after brief exposure to aztreonam. J Antimicrob Chemother. 1988 Nov;22(5):675–686. doi: 10.1093/jac/22.5.675. [DOI] [PubMed] [Google Scholar]
- Salles B., Defais M. Signal of induction of recA protein in E. coli. Mutat Res. 1984 Feb;131(2):53–59. doi: 10.1016/0167-8817(84)90011-7. [DOI] [PubMed] [Google Scholar]
- Stratton C. W., Reller L. B. Serum dilution test for bactericidal activity. I. Selection of a physiologic diluent. J Infect Dis. 1977 Aug;136(2):187–195. doi: 10.1093/infdis/136.2.187. [DOI] [PubMed] [Google Scholar]
- Tomasz A. The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol. 1979;33:113–137. doi: 10.1146/annurev.mi.33.100179.000553. [DOI] [PubMed] [Google Scholar]
- Wolfson J. S., Hooper D. C. Fluoroquinolone antimicrobial agents. Clin Microbiol Rev. 1989 Oct;2(4):378–424. doi: 10.1128/cmr.2.4.378. [DOI] [PMC free article] [PubMed] [Google Scholar]