Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Jun;39(6):1372–1375. doi: 10.1128/aac.39.6.1372

Intracellular accumulation of ofloxacin-loaded liposomes in human synovial fibroblasts.

M Fresta 1, A Spadaro 1, G Cerniglia 1, I M Ropero 1, G Puglisi 1, P M Furneri 1
PMCID: PMC162745  PMID: 7574534

Abstract

In order to incorporate ofloxacin within liposomes, the reverse-phase evaporation technique was carried out. The liposome lipid matrix consisted of dipalmitoylphosphatidylcholine-cholesterol-dihexadecylphosphate (4: 3:4 molar ratio). The liposome formulation presented a mean size of 185 +/- 31 nm and had an encapsulation capacity of 5.3 microliters/mumol. The liposome formulation was able to deliver ofloxacin into McCoy cells in a greater amount (2.6-fold) than the free drug, improving antibiotic accumulation.

Full Text

The Full Text of this article is available as a PDF (226.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedard J., Wong S., Bryan L. E. Accumulation of enoxacin by Escherichia coli and Bacillus subtilis. Antimicrob Agents Chemother. 1987 Sep;31(9):1348–1354. doi: 10.1128/aac.31.9.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benita S., Poly P. A., Puisieux F., Delattre J. Radiopaque liposomes: effect of formulation conditions on encapsulation efficiency. J Pharm Sci. 1984 Dec;73(12):1751–1755. doi: 10.1002/jps.2600731223. [DOI] [PubMed] [Google Scholar]
  3. Bonati M., Kanto J., Tognoni G. Clinical pharmacokinetics of cerebrospinal fluid. Clin Pharmacokinet. 1982 Jul-Aug;7(4):312–335. doi: 10.2165/00003088-198207040-00003. [DOI] [PubMed] [Google Scholar]
  4. Chiou W. L., Riegelman S. Oral absorption of griseofulvin in dogs: increased absorption via solid dispersion in polyethylene glycol 6000. J Pharm Sci. 1970 Jul;59(7):937–942. doi: 10.1002/jps.2600590703. [DOI] [PubMed] [Google Scholar]
  5. Desiderio J. V., Campbell S. G. Intraphagocytic killing of Salmonella typhimurium by liposome-encapsulated cephalothin. J Infect Dis. 1983 Sep;148(3):563–570. doi: 10.1093/infdis/148.3.563. [DOI] [PubMed] [Google Scholar]
  6. Desiderio J. V., Campbell S. G. Liposome-encapsulated cephalothin in the treatment of experimental murine salmonellosis. J Reticuloendothel Soc. 1983 Oct;34(4):279–287. [PubMed] [Google Scholar]
  7. Forsgren A., Bellahsène A. Antibiotic accumulation in human polymorphonuclear leucocytes and lymphocytes. Scand J Infect Dis Suppl. 1985;44:16–23. [PubMed] [Google Scholar]
  8. Fresta M., Puglisi G., Di Giacomo C., Russo A. Liposomes as in-vivo carriers for citicoline: effects on rat cerebral post-ischaemic reperfusion. J Pharm Pharmacol. 1994 Dec;46(12):974–981. doi: 10.1111/j.2042-7158.1994.tb03252.x. [DOI] [PubMed] [Google Scholar]
  9. Gabizon A. Liposomes as a drug delivery system in cancer chemotherapy. Horiz Biochem Biophys. 1989;9:185–211. [PubMed] [Google Scholar]
  10. Gabizon A., Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6949–6953. doi: 10.1073/pnas.85.18.6949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hand W. L., King-Thompson N. L. Contrasts between phagocyte antibiotic uptake and subsequent intracellular bactericidal activity. Antimicrob Agents Chemother. 1986 Jan;29(1):135–140. doi: 10.1128/aac.29.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirai K., Aoyama H., Irikura T., Iyobe S., Mitsuhashi S. Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother. 1986 Mar;29(3):535–538. doi: 10.1128/aac.29.3.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horwitz M. A., Silverstein S. C. Legionnaires' disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. J Clin Invest. 1980 Sep;66(3):441–450. doi: 10.1172/JCI109874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobs R. F., Wilson C. B. Intracellular penetration and antimicrobial activity of antibiotics. J Antimicrob Chemother. 1983 Oct;12 (Suppl 100):13–20. doi: 10.1093/jac/12.suppl_c.13. [DOI] [PubMed] [Google Scholar]
  15. Mandell G. L. Interaction of intraleukocytic bacteria and antibiotics. J Clin Invest. 1973 Jul;52(7):1673–1679. doi: 10.1172/JCI107348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Notarianni L. J., Jones R. W. Method for the determination of ofloxacin, a quinolone carboxylic acid antimicrobial, by high-performance liquid chromatography. J Chromatogr. 1988 Oct 14;431(2):461–464. doi: 10.1016/s0378-4347(00)83119-9. [DOI] [PubMed] [Google Scholar]
  17. Prokesch R. C., Hand W. L. Antibiotic entry into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1982 Mar;21(3):373–380. doi: 10.1128/aac.21.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Richardson V. J. Liposomes in antimicrobial chemotherapy. J Antimicrob Chemother. 1983 Dec;12(6):532–534. doi: 10.1093/jac/12.6.532. [DOI] [PubMed] [Google Scholar]
  19. Scherphof G. L., Daemen T., Spanjer H. H., Roerdink F. H. Liposomes in chemo- and immunotherapy of cancer. Lipids. 1987 Nov;22(11):891–896. doi: 10.1007/BF02535550. [DOI] [PubMed] [Google Scholar]
  20. Wolfson J. S., Hooper D. C. The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob Agents Chemother. 1985 Oct;28(4):581–586. doi: 10.1128/aac.28.4.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. al-Awadhi H., Stokes G. V., Reich M. Inhibition of Chlamydia trachomatis growth in mouse fibroblasts by liposome-encapsulated tetracycline. J Antimicrob Chemother. 1992 Sep;30(3):303–311. doi: 10.1093/jac/30.3.303. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES