Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Jul;39(7):1462–1466. doi: 10.1128/aac.39.7.1462

Therapeutic efficacy of a polymyxin B-dextran 70 conjugate in experimental model of endotoxemia.

S E Bucklin 1, P Lake 1, L Lögdberg 1, D C Morrison 1
PMCID: PMC162763  PMID: 7492086

Abstract

Numerous studies have suggested that lipopolysaccharide (LPS), a major component of the cell wall of gram-negative bacteria, is responsible for the initiation of gram-negative septic shock. Previously, others have designed therapeutic regimens to target the biologically active lipid A region of LPS by either neutralization of the biological properties of LPS or enhancement of clearance of this molecule. One such compound capable of neutralizing lipid A is the antibiotic polymyxin B. However, the clinical utility of polymyxin B is limited by its toxicity. We therefore covalently conjugated this antibiotic to the high-molecular-weight polysaccharide dextran 70, resulting in reduced toxicity of polymyxin B but retention of its endotoxin-neutralizing ability. The studies described in this report were designed to test the in vivo efficacy of this compound in an experimental animal model of gram-negative septic shock. Mice were administered graded doses of Escherichia coli or Pseudomonas aeruginosa along with D-galactosamine and the antibiotic imipenem. We had previously determined that antibiotic chemotherapy provides significant protection against E. coli-mediated lethality with smaller doses of bacteria; however, the antibiotic does not provide protection against larger doses of bacteria, but it is effective at killing the bacterial inoculum in vivo. Administration of the polymyxin B-dextran 70 conjugate provided significant protection when given with an antibiotic but was not effective by itself. A requirement for a pretreatment period prior to E. coli challenge was shown to depend upon the bacterial challenge dose. In other studies using this D-galactosamine sensitization model, we demonstrated that the lipid A-specific conjugate had no effect on lethality caused by staphylococcus aureus or tumor necrosis factor alpha. The results of these studies indicate that this compound is effective in preventing lethal gram-negative septic shock in mice and may be useful as a potential therapeutic agent in humans as well.

Full Text

The Full Text of this article is available as a PDF (183.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashkenazi A., Marsters S. A., Capon D. J., Chamow S. M., Figari I. S., Pennica D., Goeddel D. V., Palladino M. A., Smith D. H. Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10535–10539. doi: 10.1073/pnas.88.23.10535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beutler B., Milsark I. W., Cerami A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985 Aug 30;229(4716):869–871. doi: 10.1126/science.3895437. [DOI] [PubMed] [Google Scholar]
  3. Bone R. C., Fisher C. J., Jr, Clemmer T. P., Slotman G. J., Metz C. A., Balk R. A. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med. 1987 Sep 10;317(11):653–658. doi: 10.1056/NEJM198709103171101. [DOI] [PubMed] [Google Scholar]
  4. Corrigan J. J., Jr, Bell B. M. Endotoxin-induced intravascular coagulation: prevention with polymyxin B sulfate. J Lab Clin Med. 1971 May;77(5):802–810. [PubMed] [Google Scholar]
  5. Cross A. S., Opal S. M., Palardy J. E., Bodmer M. W., Sadoff J. C. The efficacy of combination immunotherapy in experimental Pseudomonas sepsis. J Infect Dis. 1993 Jan;167(1):112–118. doi: 10.1093/infdis/167.1.112. [DOI] [PubMed] [Google Scholar]
  6. Danner R. L., Joiner K. A., Rubin M., Patterson W. H., Johnson N., Ayers K. M., Parrillo J. E. Purification, toxicity, and antiendotoxin activity of polymyxin B nonapeptide. Antimicrob Agents Chemother. 1989 Sep;33(9):1428–1434. doi: 10.1128/aac.33.9.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doherty G. M., Lange J. R., Langstein H. N., Alexander H. R., Buresh C. M., Norton J. A. Evidence for IFN-gamma as a mediator of the lethality of endotoxin and tumor necrosis factor-alpha. J Immunol. 1992 Sep 1;149(5):1666–1670. [PubMed] [Google Scholar]
  8. Dunn D. L., Bogard W. C., Jr, Cerra F. B. Enhanced survival during murine gram-negative bacterial sepsis by use of a murine monoclonal antibody. Arch Surg. 1985 Jan;120(1):50–53. doi: 10.1001/archsurg.1985.01390250044007. [DOI] [PubMed] [Google Scholar]
  9. From A. H., Fong J. S., Good R. A. Polymyxin B sulfate modification of bacterial endotoxin: effects on the development of endotoxin shock in dogs. Infect Immun. 1979 Mar;23(3):660–664. doi: 10.1128/iai.23.3.660-664.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Galanos C., Freudenberg M. A., Reutter W. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5939–5943. doi: 10.1073/pnas.76.11.5939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goto H., Nakamura S. Liberation of endotoxin from Escherichia coli by addition of antibiotics. Jpn J Exp Med. 1980 Feb;50(1):35–43. [PubMed] [Google Scholar]
  12. Heremans H., Dillen C., Put W., Van Damme J., Billiau A. Protective effect of anti-interleukin (IL)-6 antibody against endotoxin, associated with paradoxically increased IL-6 levels. Eur J Immunol. 1992 Sep;22(9):2395–2401. doi: 10.1002/eji.1830220932. [DOI] [PubMed] [Google Scholar]
  13. Michie H. R., Manogue K. R., Spriggs D. R., Revhaug A., O'Dwyer S., Dinarello C. A., Cerami A., Wolff S. M., Wilmore D. W. Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med. 1988 Jun 9;318(23):1481–1486. doi: 10.1056/NEJM198806093182301. [DOI] [PubMed] [Google Scholar]
  14. Moore R. A., Bates N. C., Hancock R. E. Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin. Antimicrob Agents Chemother. 1986 Mar;29(3):496–500. doi: 10.1128/aac.29.3.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morrison D. C., Jacobs D. M. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry. 1976 Oct;13(10):813–818. doi: 10.1016/0019-2791(76)90181-6. [DOI] [PubMed] [Google Scholar]
  16. Morrison D. C., Ryan J. L. Endotoxins and disease mechanisms. Annu Rev Med. 1987;38:417–432. doi: 10.1146/annurev.me.38.020187.002221. [DOI] [PubMed] [Google Scholar]
  17. NETER E. Bacterial hemagglutination and hemolysis. Bacteriol Rev. 1956 Sep;20(3):166–188. doi: 10.1128/br.20.3.166-188.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Opal S. M., Cross A. S., Sadoff J. C., Collins H. H., Kelly N. M., Victor G. H., Palardy J. E., Bodmer M. W. Efficacy of antilipopolysaccharide and anti-tumor necrosis factor monoclonal antibodies in a neutropenic rat model of Pseudomonas sepsis. J Clin Invest. 1991 Sep;88(3):885–890. doi: 10.1172/JCI115390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rifkind D., Hill R. B., Jr Neutralization of the Shwartzman reactions by polymyxins B. J Immunol. 1967 Sep;99(3):564–569. [PubMed] [Google Scholar]
  20. Rifkind D., Palmer J. D. Neutralization of endotoxin toxicity in chick embryos by antibiotics. J Bacteriol. 1966 Oct;92(4):815–819. doi: 10.1128/jb.92.4.815-819.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rifkind D. Prevention by polymyxin B of endotoxin lethality in mice. J Bacteriol. 1967 Apr;93(4):1463–1464. doi: 10.1128/jb.93.4.1463-1464.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Seale T. W., Rennert O. M. Mechanisms of antibiotic-induced nephrotoxicity. Ann Clin Lab Sci. 1982 Jan-Feb;12(1):1–10. [PubMed] [Google Scholar]
  23. Tesh V. L., Duncan R. L., Jr, Morrison D. C. The interaction of Escherichia coli with normal human serum: the kinetics of serum-mediated lipopolysaccharide release and its dissociation from bacterial killing. J Immunol. 1986 Aug 15;137(4):1329–1335. [PubMed] [Google Scholar]
  24. Veterans Administration Systemic Sepsis Cooperative Study Group Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. N Engl J Med. 1987 Sep 10;317(11):659–665. doi: 10.1056/NEJM198709103171102. [DOI] [PubMed] [Google Scholar]
  25. Wakabayashi G., Gelfand J. A., Burke J. F., Thompson R. C., Dinarello C. A. A specific receptor antagonist for interleukin 1 prevents Escherichia coli-induced shock in rabbits. FASEB J. 1991 Mar 1;5(3):338–343. doi: 10.1096/fasebj.5.3.1825816. [DOI] [PubMed] [Google Scholar]
  26. Ziegler E. J., Fisher C. J., Jr, Sprung C. L., Straube R. C., Sadoff J. C., Foulke G. E., Wortel C. H., Fink M. P., Dellinger R. P., Teng N. N. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N Engl J Med. 1991 Feb 14;324(7):429–436. doi: 10.1056/NEJM199102143240701. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES