Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Jul;39(7):1467–1471. doi: 10.1128/aac.39.7.1467

Contribution of the C-8 substituent of DU-6859a, a new potent fluoroquinolone, to its activity against DNA gyrase mutants of Pseudomonas aeruginosa.

A Kitamura 1, K Hoshino 1, Y Kimura 1, I Hayakawa 1, K Sato 1
PMCID: PMC162764  PMID: 7492087

Abstract

Inhibitory effects of five quinolones against DNA gyrases purified from four quinolone-resistant clinical isolates of Pseudomonas aeruginosa and the quinolone-susceptible strain PAO1 were examined. All of the quinolone-resistant strains tested were found to be DNA gyrase mutants. The 50% inhibitory concentrations (IC50s) of the quinolones for these DNA gyrases roughly correlated with their MICs. Interestingly, gyrase inhibition by DU-6859a was found to be significantly less affected by these mutations that inhibition by other currently available quinolones. To assess the enhanced activity shown by DU-6859a, the effects of quinolones with altered substituents at the N-1, C-7, and C-8 positions of the quinolone ring of DU-6859a were tested. Measurement of MICs for four DNA gyrase mutants and IC50s for their purified DNA gyrases showed that removal of the C-8 chlorine of DU-6859a significantly increased MICs and IC50s for DNA gyrase mutants. However, no deleterious effects were observed when either the fluorine on the cyclopropyl substituent at the N-1 position or the cyclopropyl ring at the C-7 substituent was removed. Moreover, removal of the C-8 chlorine also increased the MIC for 19 of 20 quinolone-resistant clinical isolates. Our results led to the conclusion that DU-6859a is much more active against quinolone-resistant clinical isolates of P. aeruginosa than other currently available quinolones, probably because of its strong inhibitory effects against mutant quinolone-resistant DNA gyrases, and that the C-8 chlorine is necessary for these potent effects.

Full Text

The Full Text of this article is available as a PDF (199.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ferrero L., Cameron B., Manse B., Lagneaux D., Crouzet J., Famechon A., Blanche F. Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones. Mol Microbiol. 1994 Aug;13(4):641–653. doi: 10.1111/j.1365-2958.1994.tb00458.x. [DOI] [PubMed] [Google Scholar]
  2. Forstall G. J., Knapp C. C., Washington J. A. Activity of new quinolones against ciprofloxacin-resistant staphylococci. Antimicrob Agents Chemother. 1991 Aug;35(8):1679–1681. doi: 10.1128/aac.35.8.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fung-Tomc J., Kolek B., Bonner D. P. Ciprofloxacin-induced, low-level resistance to structurally unrelated antibiotics in Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1993 Jun;37(6):1289–1296. doi: 10.1128/aac.37.6.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gellert M., Mizuuchi K., O'Dea M. H., Nash H. A. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3872–3876. doi: 10.1073/pnas.73.11.3872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heisig P., Wiedemann B. Use of a broad-host-range gyrA plasmid for genetic characterization of fluoroquinolone-resistant gram-negative bacteria. Antimicrob Agents Chemother. 1991 Oct;35(10):2031–2036. doi: 10.1128/aac.35.10.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hirai K., Suzue S., Irikura T., Iyobe S., Mitsuhashi S. Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1987 Apr;31(4):582–586. doi: 10.1128/aac.31.4.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hoshino K., Kitamura A., Morrissey I., Sato K., Kato J., Ikeda H. Comparison of inhibition of Escherichia coli topoisomerase IV by quinolones with DNA gyrase inhibition. Antimicrob Agents Chemother. 1994 Nov;38(11):2623–2627. doi: 10.1128/aac.38.11.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Inoue Y., Sato K., Fujii T., Hirai K., Inoue M., Iyobe S., Mitsuhashi S. Some properties of subunits of DNA gyrase from Pseudomonas aeruginosa PAO1 and its nalidixic acid-resistant mutant. J Bacteriol. 1987 May;169(5):2322–2325. doi: 10.1128/jb.169.5.2322-2325.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iyobe S., Hirai K., Hashimoto H. Drug resistance of Pseudomonas aeruginosa with special reference to new quinolones. Antibiot Chemother (1971) 1991;44:209–214. doi: 10.1159/000420316. [DOI] [PubMed] [Google Scholar]
  10. Kato J., Nishimura Y., Imamura R., Niki H., Hiraga S., Suzuki H. New topoisomerase essential for chromosome segregation in E. coli. Cell. 1990 Oct 19;63(2):393–404. doi: 10.1016/0092-8674(90)90172-b. [DOI] [PubMed] [Google Scholar]
  11. Kimura Y., Atarashi S., Kawakami K., Sato K., Hayakawa I. (Fluorocyclopropyl)quinolones. 2. Synthesis and Stereochemical structure-activity relationships of chiral 7-(7-amino-5-azaspiro[2.4]heptan-5-yl)-1-(2-fluorocyclopropyl)quinolone antibacterial agents. J Med Chem. 1994 Sep 30;37(20):3344–3352. doi: 10.1021/jm00046a019. [DOI] [PubMed] [Google Scholar]
  12. Kureishi A., Diver J. M., Beckthold B., Schollaardt T., Bryan L. E. Cloning and nucleotide sequence of Pseudomonas aeruginosa DNA gyrase gyrA gene from strain PAO1 and quinolone-resistant clinical isolates. Antimicrob Agents Chemother. 1994 Sep;38(9):1944–1952. doi: 10.1128/aac.38.9.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moreau N. J., Robaux H., Baron L., Tabary X. Inhibitory effects of quinolones on pro- and eucaryotic DNA topoisomerases I and II. Antimicrob Agents Chemother. 1990 Oct;34(10):1955–1960. doi: 10.1128/aac.34.10.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Oram M., Fisher L. M. 4-Quinolone resistance mutations in the DNA gyrase of Escherichia coli clinical isolates identified by using the polymerase chain reaction. Antimicrob Agents Chemother. 1991 Feb;35(2):387–389. doi: 10.1128/aac.35.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Piddock L. J., Hall M. C., Bellido F., Bains M., Hancock R. E. A pleiotropic, posttherapy, enoxacin-resistant mutant of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1992 May;36(5):1057–1061. doi: 10.1128/aac.36.5.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rella M., Haas D. Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of beta-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother. 1982 Aug;22(2):242–249. doi: 10.1128/aac.22.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rådberg G., Nilsson L. E., Svensson S. Development of quinolone-imipenem cross resistance in Pseudomonas aeruginosa during exposure to ciprofloxacin. Antimicrob Agents Chemother. 1990 Nov;34(11):2142–2147. doi: 10.1128/aac.34.11.2142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sato K., Hoshino K., Tanaka M., Hayakawa I., Osada Y. Antimicrobial activity of DU-6859, a new potent fluoroquinolone, against clinical isolates. Antimicrob Agents Chemother. 1992 Jul;36(7):1491–1498. doi: 10.1128/aac.36.7.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shen L. L., Mitscher L. A., Sharma P. N., O'Donnell T. J., Chu D. W., Cooper C. S., Rosen T., Pernet A. G. Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug--DNA binding model. Biochemistry. 1989 May 2;28(9):3886–3894. doi: 10.1021/bi00435a039. [DOI] [PubMed] [Google Scholar]
  20. Sreedharan S., Peterson L. R., Fisher L. M. Ciprofloxacin resistance in coagulase-positive and -negative staphylococci: role of mutations at serine 84 in the DNA gyrase A protein of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 1991 Oct;35(10):2151–2154. doi: 10.1128/aac.35.10.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Srivenugopal K. S., Lockshon D., Morris D. R. Escherichia coli DNA topoisomerase III: purification and characterization of a new type I enzyme. Biochemistry. 1984 Apr 24;23(9):1899–1906. doi: 10.1021/bi00304a002. [DOI] [PubMed] [Google Scholar]
  22. Thomson K. S., Sanders C. C., Hayden M. E. In vitro studies with five quinolones: evidence for changes in relative potency as quinolone resistance rises. Antimicrob Agents Chemother. 1991 Nov;35(11):2329–2334. doi: 10.1128/aac.35.11.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wang J. C. Interaction between DNA and an Escherichia coli protein omega. J Mol Biol. 1971 Feb 14;55(3):523–533. doi: 10.1016/0022-2836(71)90334-2. [DOI] [PubMed] [Google Scholar]
  24. Yoshida H., Bogaki M., Nakamura M., Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother. 1990 Jun;34(6):1271–1272. doi: 10.1128/aac.34.6.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yoshida H., Bogaki M., Nakamura M., Yamanaka L. M., Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob Agents Chemother. 1991 Aug;35(8):1647–1650. doi: 10.1128/aac.35.8.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yoshida H., Nakamura M., Bogaki M., Ito H., Kojima T., Hattori H., Nakamura S. Mechanism of action of quinolones against Escherichia coli DNA gyrase. Antimicrob Agents Chemother. 1993 Apr;37(4):839–845. doi: 10.1128/aac.37.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yoshida H., Nakamura M., Bogaki M., Nakamura S. Proportion of DNA gyrase mutants among quinolone-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1990 Jun;34(6):1273–1275. doi: 10.1128/aac.34.6.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yoshida T., Muratani T., Iyobe S., Mitsuhashi S. Mechanisms of high-level resistance to quinolones in urinary tract isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1994 Jul;38(7):1466–1469. doi: 10.1128/aac.38.7.1466. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES