Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Jul;39(7):1489–1492. doi: 10.1128/aac.39.7.1489

Mechanism of action of antimycobacterial activity of the new benzoxazinorifamycin KRM-1648.

K Fujii 1, H Saito 1, H Tomioka 1, T Mae 1, K Hosoe 1
PMCID: PMC162768  PMID: 7492091

Abstract

The mechanism of antimicrobial activity of KRM-1648 (KRM), a new rifamycin derivative with potent antimycobacterial activity, was studied. Both KRM and rifampin (RMP) inhibited RNA polymerases from Escherichia coli and Mycobacterium avium at low concentrations: the 50% inhibitory concentrations (IC50s) of KRM and RMP for E. coli RNA polymerase were 0.13 and 0.10 micrograms/ml, respectively, while the IC50s for M. avium RNA polymerase were 0.20 and 0.07 microgram/ml. Both KRM and RMP exerted weak inhibitory activity against Mycobacterium fortuitum RNA polymerase, rabbit thymus RNA polymerases, E. coli DNA polymerase I, and two types of reverse transcriptases. Uptake of 14C-KRM by M. avium reached 18,000 dpm/mg (dry weight) 1.5 h after incubation, while uptake by E. coli cells was slight. KRM was much more effective in inhibiting uptake of 14C-uracil than was RMP (IC50 of KRM, 0.04 microgram/ml; IC50 of RMP, 0.12 microgram/ml). These findings suggest, first, that the potent antimycobacterial activity of KRM is due to inhibition of bacterial RNA polymerase and, second, that the activity of KRM against target organisms depends on target cell wall permeability.

Full Text

The Full Text of this article is available as a PDF (201.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burgess R. R. A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6160–6167. [PubMed] [Google Scholar]
  2. Emori M., Saito H., Sato K., Tomioka H., Setogawa T., Hidaka T. Therapeutic efficacy of the benzoxazinorifamycin KRM-1648 against experimental Mycobacterium avium infection induced in rabbits. Antimicrob Agents Chemother. 1993 Apr;37(4):722–728. doi: 10.1128/aac.37.4.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fujii K., Tsuji A., Miyazaki S., Yamaguchi K., Goto S. In vitro and in vivo antibacterial activities of KRM-1648 and KRM-1657, new rifamycin derivatives. Antimicrob Agents Chemother. 1994 May;38(5):1118–1122. doi: 10.1128/aac.38.5.1118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Harshey R. M., Ramakrishnan T. Purification and properties of DNA-dependent RNA polymerase from Mycobacterium tuberculosis H37RV. Biochim Biophys Acta. 1976 Apr 15;432(1):49–59. doi: 10.1016/0005-2787(76)90040-x. [DOI] [PubMed] [Google Scholar]
  5. Hui J., Gordon N., Kajioka R. Permeability barrier to rifampin in mycobacteria. Antimicrob Agents Chemother. 1977 May;11(5):773–779. doi: 10.1128/aac.11.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kedinger C., Gissinger F., Gniazdowski M., Mandel J. L., Chambon P. Animal DNA-dependent RNA polymerases. 1. Large-scale solubilization and separation of A and B calf-thymus RNA-polymerase activities. Eur J Biochem. 1972 Jul 13;28(2):269–276. doi: 10.1111/j.1432-1033.1972.tb01910.x. [DOI] [PubMed] [Google Scholar]
  7. Komiyama T., Oki T., Inui T. Interaction of new anthracycline antibiotics with DNA. Effects on nucleic acid synthesis and binding to DNA. Biochim Biophys Acta. 1983 May 20;740(1):80–87. doi: 10.1016/0167-4781(83)90124-0. [DOI] [PubMed] [Google Scholar]
  8. Konno K., Oizumi K., Hayashi I., Oka S. [Mode of action of rifampicin on Mycobacterium tuberculosis]. Kekkaku. 1972 Aug;47(8):255–260. [PubMed] [Google Scholar]
  9. Kuze F., Yamamoto T., Amitani R., Suzuki K. [In vivo activities of new rifamycin derivatives against mycobacteria]. Kekkaku. 1991 Jan;66(1):7–12. [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. RICHARDSON C. C., SCHILDKRAUT C. L., APOSHIAN H. V., KORNBERG A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. XIV. FURTHER PURIFICATION AND PROPERTIES OF DEOXYRIBONUCLEIC ACID POLYMERASE OF ESCHERICHIA COLI. J Biol Chem. 1964 Jan;239:222–232. [PubMed] [Google Scholar]
  12. Rastogi N., Frehel C., Ryter A., Ohayon H., Lesourd M., David H. L. Multiple drug resistance in Mycobacterium avium: is the wall architecture responsible for exclusion of antimicrobial agents? Antimicrob Agents Chemother. 1981 Nov;20(5):666–677. doi: 10.1128/aac.20.5.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Saito H., Tomioka H., Sato K., Emori M., Yamane T., Yamashita K., Hosoe K., Hidaka T. In vitro antimycobacterial activities of newly synthesized benzoxazinorifamycins. Antimicrob Agents Chemother. 1991 Mar;35(3):542–547. doi: 10.1128/aac.35.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Seydel J. K. Physico-chemical studies on rifampicin. Antibiot Chemother. 1970;16:380–391. doi: 10.1159/000386841. [DOI] [PubMed] [Google Scholar]
  15. Talpaert-Borlé M., Campagnari F., Discenza G. Effect of the rifamycin dimers on the activities of nucleic acid polymerases from various sources. Relation between lipophily and toxicity. J Antibiot (Tokyo) 1975 Aug;28(8):580–589. doi: 10.7164/antibiotics.28.580. [DOI] [PubMed] [Google Scholar]
  16. Tomioka H., Saito H., Fujii K., Sato K., Hidaka T. In vitro antimicrobial activity of benzoxazinorifamycin, KRM-1648, against Mycobacterium avium complex, determined by the radiometric method. Antimicrob Agents Chemother. 1993 Jan;37(1):67–70. doi: 10.1128/aac.37.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tomioka H., Saito H., Sato K., Yamane T., Yamashita K., Hosoe K., Fujii K., Hidaka T. Chemotherapeutic efficacy of a newly synthesized benzoxazinorifamycin, KRM-1648, against Mycobacterium avium complex infection induced in mice. Antimicrob Agents Chemother. 1992 Feb;36(2):387–393. doi: 10.1128/aac.36.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wehrli W., Nüesch J., Knüsel F., Staehelin M. Action of rifamycins on RNA polymerase. Biochim Biophys Acta. 1968 Mar 18;157(1):215–217. doi: 10.1016/0005-2787(68)90285-2. [DOI] [PubMed] [Google Scholar]
  19. White R. J., Lancini G. C., Silvestri L. G. Mechanism of action of rifampin on Mycobacterium smegmatis. J Bacteriol. 1971 Nov;108(2):737–741. doi: 10.1128/jb.108.2.737-741.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yamamoto T., Amitani R., Kuze F., Suzuki K. [In vitro activities of new rifamycin derivatives against Mycobacterium tuberculosis and M. avium complex]. Kekkaku. 1990 Dec;65(12):805–810. [PubMed] [Google Scholar]
  21. Yamane T., Hashizume T., Yamashita K., Konishi E., Hosoe K., Hidaka T., Watanabe K., Kawaharada H., Yamamoto T., Kuze F. Synthesis and biological activity of 3'-hydroxy-5'-aminobenzoxazinorifamycin derivatives. Chem Pharm Bull (Tokyo) 1993 Jan;41(1):148–155. doi: 10.1248/cpb.41.148. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES