Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Jul;39(7):1522–1525. doi: 10.1128/aac.39.7.1522

Improved bactericidal activity of Q-35 against quinolone-resistant staphylococci.

T Ito 1, M Matsumoto 1, T Nishino 1
PMCID: PMC162774  PMID: 7492097

Abstract

The bactericidal effects of Q-35, sparfloxacin, tosufloxacin, and ofloxacin on 18 strains of methicillin-resistant Staphylococcus aureus (MRSA) and 3 strains of Staphylococcus epidermidis were studied by a viable-count method. Staphylococci as used in this study were clearly divided into two groups with respect to their susceptibilities to sparfloxacin. MICs of Q-35 and tosufloxacin were 0.05 to 0.78 microgram/ml for sparfloxacin-susceptible strains (MICs, 0.05 to 0.2 microgram/ml) and 1.56 to 12.5 micrograms/ml for sparfloxacin-resistant strains (6.25 to 25 micrograms/ml). All the sparfloxacin-resistant strains of MRSA tested contained the gyrA mutation at codon 84. Time-kill studies showed that Q-35 decreased the viable counts from approximately 10(7) CFU/ml to 10(3) to 10(5) CFU/ml within 3 h at concentrations greater than the MICs against both sparfloxacin-susceptible and -resistant strains. In contrast, sparfloxacin, tosufloxacin, and ofloxacin produced bacteriostatic effects at 3 h after exposure against sparfloxacin-resistant strains at concentrations which were greater than the respective MICs, whereas these quinolones were bactericidal against sparfloxacin-susceptible strains. The rapid bactericidal activities of Q-35 against sparfloxacin-resistant MRSA were reduced when the methoxy group of Q-35 at the 8 position was substituted with fluorine or hydrogen. Thus, our data suggest that the introduction of a methoxy group into the 8 position of quinolones contributes to the bactericidal activities of fluoroquinolones against quinolone-resistant staphylococci.

Full Text

The Full Text of this article is available as a PDF (226.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazile S., Moreau N., Bouzard D., Essiz M. Relationships among antibacterial activity, inhibition of DNA gyrase, and intracellular accumulation of 11 fluoroquinolones. Antimicrob Agents Chemother. 1992 Dec;36(12):2622–2627. doi: 10.1128/aac.36.12.2622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ferrero L., Cameron B., Manse B., Lagneaux D., Crouzet J., Famechon A., Blanche F. Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones. Mol Microbiol. 1994 Aug;13(4):641–653. doi: 10.1111/j.1365-2958.1994.tb00458.x. [DOI] [PubMed] [Google Scholar]
  3. Fujimaki K., Noumi T., Saikawa I., Inoue M., Mitsuhashi S. In vitro and in vivo antibacterial activities of T-3262, a new fluoroquinolone. Antimicrob Agents Chemother. 1988 Jun;32(6):827–833. doi: 10.1128/aac.32.6.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ito H., Yoshida H., Bogaki-Shonai M., Niga T., Hattori H., Nakamura S. Quinolone resistance mutations in the DNA gyrase gyrA and gyrB genes of Staphylococcus aureus. Antimicrob Agents Chemother. 1994 Sep;38(9):2014–2023. doi: 10.1128/aac.38.9.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ito T., Kojima K., Koizumi K., Nagano H., Nishino T. Inhibitory activity on DNA gyrase and intracellular accumulation of quinolones: structure-activity relationship of Q-35 analogs. Biol Pharm Bull. 1994 Jul;17(7):927–930. doi: 10.1248/bpb.17.927. [DOI] [PubMed] [Google Scholar]
  6. Ito T., Otsuki M., Nishino T. In vitro antibacterial activity of Q-35, a new fluoroquinolone. Antimicrob Agents Chemother. 1992 Aug;36(8):1708–1714. doi: 10.1128/aac.36.8.1708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kojima T., Inoue M., Mitsuhashi S. In vitro activity of AT-4140 against clinical bacterial isolates. Antimicrob Agents Chemother. 1989 Nov;33(11):1980–1988. doi: 10.1128/aac.33.11.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nakanishi N., Yoshida S., Wakebe H., Inoue M., Yamaguchi T., Mitsuhashi S. Mechanisms of clinical resistance to fluoroquinolones in Staphylococcus aureus. Antimicrob Agents Chemother. 1991 Dec;35(12):2562–2567. doi: 10.1128/aac.35.12.2562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Okuda J., Okamoto S., Takahata M., Nishino T. Inhibitory effects of ciprofloxacin and sparfloxacin on DNA gyrase purified from fluoroquinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1991 Nov;35(11):2288–2293. doi: 10.1128/aac.35.11.2288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schaefler S. Methicillin-resistant strains of Staphylococcus aureus resistant to quinolones. J Clin Microbiol. 1989 Feb;27(2):335–336. doi: 10.1128/jcm.27.2.335-336.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Shalit I., Berger S. A., Gorea A., Frimerman H. Widespread quinolone resistance among methicillin-resistant Staphylococcus aureus isolates in a general hospital. Antimicrob Agents Chemother. 1989 Apr;33(4):593–594. doi: 10.1128/aac.33.4.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sreedharan S., Peterson L. R., Fisher L. M. Ciprofloxacin resistance in coagulase-positive and -negative staphylococci: role of mutations at serine 84 in the DNA gyrase A protein of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 1991 Oct;35(10):2151–2154. doi: 10.1128/aac.35.10.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tokue Y., Sugano K., Saito D., Noda T., Ohkura H., Shimosato Y., Sekiya T. Detection of novel mutations in the gyrA gene of Staphylococcus aureus by nonradioisotopic single-strand conformation polymorphism analysis and direct DNA sequencing. Antimicrob Agents Chemother. 1994 Mar;38(3):428–431. doi: 10.1128/aac.38.3.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Trucksis M., Wolfson J. S., Hooper D. C. A novel locus conferring fluoroquinolone resistance in Staphylococcus aureus. J Bacteriol. 1991 Sep;173(18):5854–5860. doi: 10.1128/jb.173.18.5854-5860.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yoshida H., Bogaki M., Nakamura S., Ubukata K., Konno M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol. 1990 Dec;172(12):6942–6949. doi: 10.1128/jb.172.12.6942-6949.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES