Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Jul;39(7):1574–1579. doi: 10.1128/aac.39.7.1574

Influence of pentoxifylline and its derivatives on antibiotic uptake and superoxide generation by human phagocytic cells.

W L Hand 1, D L Hand 1
PMCID: PMC162784  PMID: 7492107

Abstract

Pentoxifylline modulates multiple activities of stimulated polymorphonuclear neutrophils (PMNs), including the respiratory burst response and membrane transport of certain substances (e.g., nucleosides). We found that several weakly basic antibiotics are highly concentrated by human PMNs and that these drugs also inhibit the respiratory burst response (by a mechanism different from that of pentoxifylline). Since both pentoxifylline and antibiotics will be administered to some patients with serious infections, we have evaluated several types of interactions between these drugs and human PMNs and have attempted to identify the mechanisms that produce alterations in cellular function. Roxithromycin, dirithromycin, and clindamycin were avidly concentrated by PMNs. Pentoxifylline and two derivatives (HWA-448 [torbafylline] and HWA-138 [albifylline]) increased the uptake of these antibiotics by PMNs, both in the resting state and during phagocytosis. Pentoxifylline, HWA-448, HWA-138, and the highly concentrated antibiotics each exerted an inhibitory effect on the stimulated respiratory burst response in PMNs. The combination of both pentoxifylline and a modulatory antibiotic (roxithromycin or clindamycin) inhibited superoxide production to a greater extent than either agent alone. This additive effect might be expected, since pentoxifylline and the modulatory antibiotics influence the respiratory burst activation pathway at different sites. The ability of pentoxifylline to augment the entry of antibiotics into neutrophils has important therapeutic implications. The consequences of this phenomenon might include improved intracellular bactericidal activity as well as efficient antibiotic delivery and release at sites of infection.

Full Text

The Full Text of this article is available as a PDF (181.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bessler H., Gilgal R., Djaldetti M., Zahavi I. Effect of pentoxifylline on the phagocytic activity, cAMP levels, and superoxide anion production by monocytes and polymorphonuclear cells. J Leukoc Biol. 1986 Dec;40(6):747–754. doi: 10.1002/jlb.40.6.747. [DOI] [PubMed] [Google Scholar]
  2. Bruns R. F., Daly J. W., Snyder S. H. Adenosine receptor binding: structure-activity analysis generates extremely potent xanthine antagonists. Proc Natl Acad Sci U S A. 1983 Apr;80(7):2077–2080. doi: 10.1073/pnas.80.7.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bøyum A. Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol. 1976 Jun;Suppl 5:9–15. [PubMed] [Google Scholar]
  4. Chao C. C., Hu S., Close K., Choi C. S., Molitor T. W., Novick W. J., Peterson P. K. Cytokine release from microglia: differential inhibition by pentoxifylline and dexamethasone. J Infect Dis. 1992 Oct;166(4):847–853. doi: 10.1093/infdis/166.4.847. [DOI] [PubMed] [Google Scholar]
  5. Crapo J. D., McCord J. M., Fridovich I. Preparation and assay of superoxide dismutases. Methods Enzymol. 1978;53:382–393. doi: 10.1016/s0076-6879(78)53044-9. [DOI] [PubMed] [Google Scholar]
  6. Cronstein B. N., Kramer S. B., Weissmann G., Hirschhorn R. Adenosine: a physiological modulator of superoxide anion generation by human neutrophils. J Exp Med. 1983 Oct 1;158(4):1160–1177. doi: 10.1084/jem.158.4.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cronstein B. N., Rosenstein E. D., Kramer S. B., Weissmann G., Hirschhorn R. Adenosine; a physiologic modulator of superoxide anion generation by human neutrophils. Adenosine acts via an A2 receptor on human neutrophils. J Immunol. 1985 Aug;135(2):1366–1371. [PubMed] [Google Scholar]
  8. Crouch S. P., Fletcher J. Effect of ingested pentoxifylline on neutrophil superoxide anion production. Infect Immun. 1992 Nov;60(11):4504–4509. doi: 10.1128/iai.60.11.4504-4509.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cushley M. J., Tattersfield A. E., Holgate S. T. Adenosine antagonism as an alternative mechanism of action of methylxanthines in asthma. Agents Actions Suppl. 1983;13:109–113. [PubMed] [Google Scholar]
  10. Daly J. W., Bruns R. F., Snyder S. H. Adenosine receptors in the central nervous system: relationship to the central actions of methylxanthines. Life Sci. 1981 May 11;28(19):2083–2097. doi: 10.1016/0024-3205(81)90614-7. [DOI] [PubMed] [Google Scholar]
  11. Ehrly A. M. The effect of pentoxifylline on the deformability of erythrocytes and on the muscular oxygen pressure in patients with chronic arterial disease. J Med. 1979;10(5):331–338. [PubMed] [Google Scholar]
  12. Han J., Thompson P., Beutler B. Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis factor synthesis at separate points in the signaling pathway. J Exp Med. 1990 Jul 1;172(1):391–394. doi: 10.1084/jem.172.1.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hand W. L., Butera M. L., King-Thompson N. L., Hand D. L. Pentoxifylline modulation of plasma membrane functions in human polymorphonuclear leukocytes. Infect Immun. 1989 Nov;57(11):3520–3526. doi: 10.1128/iai.57.11.3520-3526.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hand W. L., Corwin R. W., Steinberg T. H., Grossman G. D. Uptake of antibiotics by human alveolar macrophages. Am Rev Respir Dis. 1984 Jun;129(6):933–937. doi: 10.1164/arrd.1984.129.6.933. [DOI] [PubMed] [Google Scholar]
  15. Hand W. L., Hand D. L. Interactions of dirithromycin with human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1993 Dec;37(12):2557–2562. doi: 10.1128/aac.37.12.2557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hand W. L., Hand D. L., King-Thompson N. L. Antibiotic inhibition of the respiratory burst response in human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1990 May;34(5):863–870. doi: 10.1128/aac.34.5.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hand W. L., King-Thompson N. L. Contrasts between phagocyte antibiotic uptake and subsequent intracellular bactericidal activity. Antimicrob Agents Chemother. 1986 Jan;29(1):135–140. doi: 10.1128/aac.29.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hand W. L., King-Thompson N. L. Membrane transport of clindamycin in alveolar macrophages. Antimicrob Agents Chemother. 1982 Feb;21(2):241–247. doi: 10.1128/aac.21.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hand W. L., King-Thompson N., Holman J. W. Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1987 Oct;31(10):1553–1557. doi: 10.1128/aac.31.10.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Holgate S. T., Mann J. S., Cushley M. J. Adenosine as a bronchoconstrictor mediator in asthma and its antagonism by methylxanthines. J Allergy Clin Immunol. 1984 Sep;74(3 Pt 1):302–306. doi: 10.1016/0091-6749(84)90262-8. [DOI] [PubMed] [Google Scholar]
  21. Ishiguro M., Koga H., Kohno S., Hayashi T., Yamaguchi K., Hirota M. Penetration of macrolides into human polymorphonuclear leucocytes. J Antimicrob Chemother. 1989 Nov;24(5):719–729. doi: 10.1093/jac/24.5.719. [DOI] [PubMed] [Google Scholar]
  22. Johnson J. D., Hand W. L., Francis J. B., King-Thompson N., Corwin R. W. Antibiotic uptake by alveolar macrophages. J Lab Clin Med. 1980 Mar;95(3):429–439. [PubMed] [Google Scholar]
  23. Johnston R. B., Jr, Keele B. B., Jr, Misra H. P., Lehmeyer J. E., Webb L. S., Baehner R. L., RaJagopalan K. V. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes. J Clin Invest. 1975 Jun;55(6):1357–1372. doi: 10.1172/JCI108055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krause P. J., Kristie J., Wang W. P., Eisenfeld L., Herson V. C., Maderazo E. G., Jozaki K., Kreutzer D. L. Pentoxifylline enhancement of defective neutrophil function and host defense in neonatal mice. Am J Pathol. 1987 Nov;129(2):217–222. [PMC free article] [PubMed] [Google Scholar]
  25. Londos C., Cooper D. M., Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):2551–2554. doi: 10.1073/pnas.77.5.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Meskini N., Némoz G., Okyayuz-Baklouti I., Lagarde M., Prigent A. F. Phosphodiesterase inhibitory profile of some related xanthine derivatives pharmacologically active on the peripheral microcirculation. Biochem Pharmacol. 1994 Mar 2;47(5):781–788. doi: 10.1016/0006-2952(94)90477-4. [DOI] [PubMed] [Google Scholar]
  27. Perry D. K., Hand W. L., Edmondson D. E., Lambeth J. D. Role of phospholipase D-derived diradylglycerol in the activation of the human neutrophil respiratory burst oxidase. Inhibition by phosphatidic acid phosphohydrolase inhibitors. J Immunol. 1992 Oct 15;149(8):2749–2758. [PubMed] [Google Scholar]
  28. Prada J., Prager C., Neifer S., Bienzle U., Kremsner P. G. Production of interleukin-6 by human and murine mononuclear leukocytes stimulated with Plasmodium antigens is enhanced by pentoxifylline, and tumor necrosis factor secretion is reduced. Infect Immun. 1993 Jun;61(6):2737–2740. doi: 10.1128/iai.61.6.2737-2740.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Prokesch R. C., Hand W. L. Antibiotic entry into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1982 Mar;21(3):373–380. doi: 10.1128/aac.21.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Redl H., Schlag G., Ceska M., Davies J., Buurman W. A. Interleukin-8 release in baboon septicemia is partially dependent on tumor necrosis factor. J Infect Dis. 1993 Jun;167(6):1464–1466. doi: 10.1093/infdis/167.6.1464. [DOI] [PubMed] [Google Scholar]
  31. Rice G. C., Brown P. A., Nelson R. J., Bianco J. A., Singer J. W., Bursten S. Protection from endotoxic shock in mice by pharmacologic inhibition of phosphatidic acid. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3857–3861. doi: 10.1073/pnas.91.9.3857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schramm M., Selinger Z. Message transmission: receptor controlled adenylate cyclase system. Science. 1984 Sep 21;225(4668):1350–1356. doi: 10.1126/science.6147897. [DOI] [PubMed] [Google Scholar]
  33. Sheetz M. P., Wang W. P., Kreutzer D. L. Polyphosphoinositides as regulators of membrane skeletal stability. Kroc Found Ser. 1984;16:87–94. [PubMed] [Google Scholar]
  34. Steinberg T. H., Hand W. L. Effect of phagocyte membrane stimulation on antibiotic uptake and intracellular bactericidal activity. Antimicrob Agents Chemother. 1987 Apr;31(4):660–662. doi: 10.1128/aac.31.4.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Steinberg T. H., Hand W. L. Effects of phagocytosis on antibiotic and nucleoside uptake by human polymorphonuclear leukocytes. J Infect Dis. 1984 Mar;149(3):397–403. doi: 10.1093/infdis/149.3.397. [DOI] [PubMed] [Google Scholar]
  36. Strieter R. M., Remick D. G., Ward P. A., Spengler R. N., Lynch J. P., 3rd, Larrick J., Kunkel S. L. Cellular and molecular regulation of tumor necrosis factor-alpha production by pentoxifylline. Biochem Biophys Res Commun. 1988 Sep 30;155(3):1230–1236. doi: 10.1016/s0006-291x(88)81271-3. [DOI] [PubMed] [Google Scholar]
  37. Sullivan G. W., Carper H. T., Novick W. J., Jr, Mandell G. L. Inhibition of the inflammatory action of interleukin-1 and tumor necrosis factor (alpha) on neutrophil function by pentoxifylline. Infect Immun. 1988 Jul;56(7):1722–1729. doi: 10.1128/iai.56.7.1722-1729.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sullivan G. W., Patselas T. N., Redick J. A., Mandell G. L. Enhancement of chemotaxis and protection of mice from infection. Trans Assoc Am Physicians. 1984;97:337–345. [PubMed] [Google Scholar]
  39. Thiel M., Bardenheuer H., Pöch G., Madel C., Peter K. Pentoxifylline does not act via adenosine receptors in the inhibition of the superoxide anion production of human polymorphonuclear leukocytes. Biochem Biophys Res Commun. 1991 Oct 15;180(1):53–58. doi: 10.1016/s0006-291x(05)81253-7. [DOI] [PubMed] [Google Scholar]
  40. Welsh C. H., Lien D., Worthen G. S., Weil J. V. Pentoxifylline decreases endotoxin-induced pulmonary neutrophil sequestration and extravascular protein accumulation in the dog. Am Rev Respir Dis. 1988 Nov;138(5):1106–1114. doi: 10.1164/ajrccm/138.5.1106. [DOI] [PubMed] [Google Scholar]
  41. Yasui K., Komiyama A., Molski T. F., Sha'afi R. I. Pentoxifylline and CD14 antibody additively inhibit priming of polymorphonuclear leukocytes for enhanced release of superoxide by lipopolysaccharide: possible mechanism of these actions. Infect Immun. 1994 Mar;62(3):922–927. doi: 10.1128/iai.62.3.922-927.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Young J. D., Jarvis S. M. Nucleoside transport in animal cells. Biosci Rep. 1983 Apr;3(4):309–322. doi: 10.1007/BF01122895. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES