Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1983 May;58(5):343–345. doi: 10.1136/adc.58.5.343

Sodium homeostasis in term and preterm neonates. II. Gastrointestinal aspects.

J Al-Dahhan, G B Haycock, C Chantler, L Stimmler
PMCID: PMC1627872  PMID: 6859913

Abstract

Eighty five 24 hour balance studies were performed on 70 healthy newborn infants of gestational age 27-40 weeks; dietary intake and stool losses of sodium were measured. There was a relation between gastrointestinal sodium absorption and conceptional age (the sum of gestational and postnatal age), whether expressed as absolute stool sodium losses or as the ratio of stool sodium to dietary sodium intake. The stool K:Na ratio rose appreciably with maturation, although stool content of potassium was not greatly increased. These findings suggest that intestinal sodium absorption is inefficient in immature babies and that the degree of malabsorption is inversely related to conceptional age.

Full text

PDF
343

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Dahhan J., Haycock G. B., Chantler C., Stimmler L. Sodium homeostasis in term and preterm neonates. I. Renal aspects. Arch Dis Child. 1983 May;58(5):335–342. doi: 10.1136/adc.58.5.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aperia A., Broberger O., Herin P., Zetterström R. Sodium excretion in relation to sodium intake and aldosterone excretion in newborn pre-term and full-term infants. Acta Paediatr Scand. 1979 Nov;68(6):813–817. doi: 10.1111/j.1651-2227.1979.tb08217.x. [DOI] [PubMed] [Google Scholar]
  3. Campos J. V., Neto U. F., Patricio F. R., Wehba J., Carvalho A. A., Shiner M. Jejunal mucosa in marasmic children. Clinical, pathological, and fine structural evaluation of the effect of protein-energy malnutrition and environmental contamination. Am J Clin Nutr. 1979 Aug;32(8):1575–1591. doi: 10.1093/ajcn/32.8.1575. [DOI] [PubMed] [Google Scholar]
  4. Day G. M., Radde I. C., Balfe J. W., Chance G. W. Electrolyte abnormalities in very low birthweight infants. Pediatr Res. 1976 May;10(5):522–526. doi: 10.1203/00006450-197605000-00003. [DOI] [PubMed] [Google Scholar]
  5. Dillon M. J., Gillin M. E., Ryness J. M., de Swiet M. Plasma renin activity and aldosterone concentration in the human newborn. Arch Dis Child. 1976 Jul;51(7):537–540. doi: 10.1136/adc.51.7.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dolman D., Edmonds C. J. The effect of aldosterone and the renin-angiotensin system on sodium, potassium and chloride transport by proximal and distal rat colon in vivo. J Physiol. 1975 Sep;250(3):597–611. doi: 10.1113/jphysiol.1975.sp011072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dubowitz L. M., Dubowitz V., Goldberg C. Clinical assessment of gestational age in the newborn infant. J Pediatr. 1970 Jul;77(1):1–10. doi: 10.1016/s0022-3476(70)80038-5. [DOI] [PubMed] [Google Scholar]
  8. Ducker D. A., Hughes C. A., Warren I., McNeish A. S. Neonatal gut function, measured by the one hour blood D (+) xylose test: influence of gestational age and size. Gut. 1980 Feb;21(2):133–136. doi: 10.1136/gut.21.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Engelke S. C., Shah B. L., Vasan U., Raye J. R. Sodium balance in very low-birth-weight infants. J Pediatr. 1978 Nov;93(5):837–841. doi: 10.1016/s0022-3476(78)81097-x. [DOI] [PubMed] [Google Scholar]
  10. Ferguson D. R., James P. S., Paterson J. Y., Saunders J. C., Smith M. W. Aldosterone induced changes in colonic sodium transport occurring naturally during development in the neonatal pig. J Physiol. 1979 Jul;292:495–504. doi: 10.1113/jphysiol.1979.sp012867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grand R. J., Watkins J. B., Torti F. M. Development of the human gastrointestinal tract. A review. Gastroenterology. 1976 May;70(5 PT1):790–810. [PubMed] [Google Scholar]
  12. Roy R. N., Chance G. W., Radde I. C., Hill D. E., Willis D. M., Sheepers J. Late hyponatremia in very low birthweight infants. (less than 1.3 kilograms). Pediatr Res. 1976 May;10(5):526–531. doi: 10.1203/00006450-197605000-00004. [DOI] [PubMed] [Google Scholar]
  13. Shepherd R. W., Hamilton J. R., Gall D. G. The postnatal development of sodium transport in the proximal small intestine of the rabbit. Pediatr Res. 1980 Mar;14(3):250–253. doi: 10.1203/00006450-198003000-00015. [DOI] [PubMed] [Google Scholar]
  14. Sulyok E., Varga F., Györy E., Jobst K., Csaba I. F. On the mechanisms of renal sodium handling in newborn infants. Biol Neonate. 1980;37(1-2):75–79. doi: 10.1159/000241258. [DOI] [PubMed] [Google Scholar]
  15. Sulyok E., Varga F., Györy E., Jobst K., Csaba I. F. Postnatal development of renal sodium handling in premature infants. J Pediatr. 1979 Nov;95(5 Pt 1):787–792. doi: 10.1016/s0022-3476(79)80737-4. [DOI] [PubMed] [Google Scholar]
  16. Thodenius K. Renal control of sodium homeostasis in infancy. Acta Paediatr Scand Suppl. 1974;(253):1–28. doi: 10.1111/j.1651-2227.1974.tb05719.x. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES