Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Aug;39(8):1700–1703. doi: 10.1128/aac.39.8.1700

Characterization of fluoroquinolone-resistant mutant strains of Mycobacterium tuberculosis selected in the laboratory and isolated from patients.

G J Alangaden 1, E K Manavathu 1, S B Vakulenko 1, N M Zvonok 1, S A Lerner 1
PMCID: PMC162811  PMID: 7486904

Abstract

To examine the mechanism of resistance to fluoroquinolones in Mycobacterium tuberculosis, we selected spontaneous fluoroquinolone-resistant mutants from a susceptible strain, H37Rv, and studied the susceptibilities of these mutants and two fluoroquinolone-resistant clinical isolates (A-382, A-564) to various fluoroquinolones and to isoniazid and rifampin. Furthermore, since mutations within the quinolone resistance-determining region of the structural gene encoding the A subunit of DNA gyrase are the most common mechanism of acquired resistance, we amplified this region by PCR and compared the nucleotide sequences of the fluoroquinolone-resistant strains with that of the susceptible strain. Fluoroquinolone-resistant mutants of H37Rv appeared at frequencies of 2 x 10(-6) to 1 x 10(-8). For three mutants selected on ciprofloxacin, ofloxacin, and sparfloxacin, respectively, and the two clinical isolates, MICs of ciprofloxacin and ofloxacin were as high as 16 micrograms/ml, and those of sparfloxacin were 4 to 8 micrograms/ml. They displayed cross-resistance to all fluoroquinolones tested but not to isoniazid or rifampin. Sparfloxacin and FQ-A (PD 127391-0002) were the most potent fluoroquinolones. All of the fluoroquinolone-resistant strains (MICs, > or = 4 micrograms/ml) had mutations in the quinolone resistance-determining region which led to substitution of the Asp residue at position 87 (Asp-87) by Asn or Ala or the substitution of Ala-83 by Val in the A subunit of DNA gyrase. Similar mutations have been noted in other bacterial species and recently in mycobacteria. The broad resistance to fluoroquinolones that arose readily by point mutation in the laboratory and apparently during inadequate therapy, as was the case in the clinical isolates, may ultimately lead to to serious restriction of the use of these drugs in the treatment of tuberculosis.

Full Text

The Full Text of this article is available as a PDF (253.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes P. F., Bloch A. B., Davidson P. T., Snider D. E., Jr Tuberculosis in patients with human immunodeficiency virus infection. N Engl J Med. 1991 Jun 6;324(23):1644–1650. doi: 10.1056/NEJM199106063242307. [DOI] [PubMed] [Google Scholar]
  2. Bloch A. B., Rieder H. L., Kelly G. D., Cauthen G. M., Hayden C. H., Snider D. E., Jr The epidemiology of tuberculosis in the United States. Implications for diagnosis and treatment. Clin Chest Med. 1989 Sep;10(3):297–313. [PubMed] [Google Scholar]
  3. Cambau E., Sougakoff W., Besson M., Truffot-Pernot C., Grosset J., Jarlier V. Selection of a gyrA mutant of Mycobacterium tuberculosis resistant to fluoroquinolones during treatment with ofloxacin. J Infect Dis. 1994 Aug;170(2):479–483. doi: 10.1093/infdis/170.2.479. [DOI] [PubMed] [Google Scholar]
  4. Cambau E., Sougakoff W., Jarlier V. Amplification and nucleotide sequence of the quinolone resistance-determining region in the gyrA gene of mycobacteria. FEMS Microbiol Lett. 1994 Feb 1;116(1):49–54. doi: 10.1111/j.1574-6968.1994.tb06674.x. [DOI] [PubMed] [Google Scholar]
  5. Cullen M. E., Wyke A. W., Kuroda R., Fisher L. M. Cloning and characterization of a DNA gyrase A gene from Escherichia coli that confers clinical resistance to 4-quinolones. Antimicrob Agents Chemother. 1989 Jun;33(6):886–894. doi: 10.1128/aac.33.6.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frieden T. R., Sterling T., Pablos-Mendez A., Kilburn J. O., Cauthen G. M., Dooley S. W. The emergence of drug-resistant tuberculosis in New York City. N Engl J Med. 1993 Feb 25;328(8):521–526. doi: 10.1056/NEJM199302253280801. [DOI] [PubMed] [Google Scholar]
  7. Gorzynski E. A., Gutman S. I., Allen W. Comparative antimycobacterial activities of difloxacin, temafloxacin, enoxacin, pefloxacin, reference fluoroquinolones, and a new macrolide, clarithromycin. Antimicrob Agents Chemother. 1989 Apr;33(4):591–592. doi: 10.1128/aac.33.4.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goswitz J. J., Willard K. E., Fasching C. E., Peterson L. R. Detection of gyrA gene mutations associated with ciprofloxacin resistance in methicillin-resistant Staphylococcus aureus: analysis by polymerase chain reaction and automated direct DNA sequencing. Antimicrob Agents Chemother. 1992 May;36(5):1166–1169. doi: 10.1128/aac.36.5.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heisig P., Schedletzky H., Falkenstein-Paul H. Mutations in the gyrA gene of a highly fluoroquinolone-resistant clinical isolate of Escherichia coli. Antimicrob Agents Chemother. 1993 Apr;37(4):696–701. doi: 10.1128/aac.37.4.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jereb J. A., Kelly G. D., Dooley S. W., Jr, Cauthen G. M., Snider D. E., Jr Tuberculosis morbidity in the United States: final data, 1990. MMWR CDC Surveill Summ. 1991 Dec;40(3):23–27. [PubMed] [Google Scholar]
  11. Ji B., Truffot-Pernot C., Grosset J. In vitro and in vivo activities of sparfloxacin (AT-4140) against Mycobacterium tuberculosis. Tubercle. 1991 Sep;72(3):181–186. doi: 10.1016/0041-3879(91)90004-c. [DOI] [PubMed] [Google Scholar]
  12. Kohno S., Koga H., Kaku M., Maesaki S., Hara K. Prospective comparative study of ofloxacin or ethambutol for the treatment of pulmonary tuberculosis. Chest. 1992 Dec;102(6):1815–1818. doi: 10.1378/chest.102.6.1815. [DOI] [PubMed] [Google Scholar]
  13. Leysen D. C., Haemers A., Pattyn S. R. Mycobacteria and the new quinolones. Antimicrob Agents Chemother. 1989 Jan;33(1):1–5. doi: 10.1128/aac.33.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Oram M., Fisher L. M. 4-Quinolone resistance mutations in the DNA gyrase of Escherichia coli clinical isolates identified by using the polymerase chain reaction. Antimicrob Agents Chemother. 1991 Feb;35(2):387–389. doi: 10.1128/aac.35.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rastogi N., Goh K. S. In vitro activity of the new difluorinated quinolone sparfloxacin (AT-4140) against Mycobacterium tuberculosis compared with activities of ofloxacin and ciprofloxacin. Antimicrob Agents Chemother. 1991 Sep;35(9):1933–1936. doi: 10.1128/aac.35.9.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rastogi N., Ross B. C., Dwyer B., Goh K. S., Clavel-Sérès S., Jeantils V., Cruaud P. Emergence during unsuccessful chemotherapy of multiple drug resistance in a strain of Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis. 1992 Oct;11(10):901–907. doi: 10.1007/BF01962370. [DOI] [PubMed] [Google Scholar]
  17. Revel V., Cambau E., Jarlier V., Sougakoff W. Characterization of mutations in Mycobacterium smegmatis involved in resistance to fluoroquinolones. Antimicrob Agents Chemother. 1994 Sep;38(9):1991–1996. doi: 10.1128/aac.38.9.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sreedharan S., Oram M., Jensen B., Peterson L. R., Fisher L. M. DNA gyrase gyrA mutations in ciprofloxacin-resistant strains of Staphylococcus aureus: close similarity with quinolone resistance mutations in Escherichia coli. J Bacteriol. 1990 Dec;172(12):7260–7262. doi: 10.1128/jb.172.12.7260-7262.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Takiff H. E., Salazar L., Guerrero C., Philipp W., Huang W. M., Kreiswirth B., Cole S. T., Jacobs W. R., Jr, Telenti A. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother. 1994 Apr;38(4):773–780. doi: 10.1128/aac.38.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tsukamura M. In vitro antituberculosis activity of a new antibacterial substance ofloxacin (DL8280). Am Rev Respir Dis. 1985 Mar;131(3):348–351. doi: 10.1164/arrd.1985.131.3.348. [DOI] [PubMed] [Google Scholar]
  21. Tsukamura M., Nakamura E., Yoshii S., Amano H. Therapeutic effect of a new antibacterial substance ofloxacin (DL8280) on pulmonary tuberculosis. Am Rev Respir Dis. 1985 Mar;131(3):352–356. doi: 10.1164/arrd.1985.131.3.352. [DOI] [PubMed] [Google Scholar]
  22. Wang J. C. DNA topoisomerases. Annu Rev Biochem. 1985;54:665–697. doi: 10.1146/annurev.bi.54.070185.003313. [DOI] [PubMed] [Google Scholar]
  23. Wang Y., Huang W. M., Taylor D. E. Cloning and nucleotide sequence of the Campylobacter jejuni gyrA gene and characterization of quinolone resistance mutations. Antimicrob Agents Chemother. 1993 Mar;37(3):457–463. doi: 10.1128/aac.37.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wolfson J. S., Hooper D. C. Bacterial resistance to quinolones: mechanisms and clinical importance. Rev Infect Dis. 1989 Jul-Aug;11 (Suppl 5):S960–S968. doi: 10.1093/clinids/11.supplement_5.s960. [DOI] [PubMed] [Google Scholar]
  25. Yoshida H., Bogaki M., Nakamura M., Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother. 1990 Jun;34(6):1271–1272. doi: 10.1128/aac.34.6.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES