Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Aug;39(8):1764–1771. doi: 10.1128/aac.39.8.1764

Bactericidal killing activities of cefepime, ceftazidime, cefotaxime, and ceftriaxone against Staphylococcus aureus and beta-lactamase-producing strains of Enterobacter aerogenes and Klebsiella pneumoniae in an in vitro infection model.

S M Palmer 1, S L Kang 1, D M Cappelletty 1, M J Rybak 1
PMCID: PMC162823  PMID: 7486916

Abstract

Cefepime (CP) is a new injectable cephalosporin with a broad spectrum of activity and stability against common chromosomally and plasmid-mediated beta-lactamases. The bactericidal activities of CP, ceftazidime (CZ), cefotaxime (CTX), and ceftriaxone (CAX) against reference and clinical strains of Staphylococcus aureus, an isogenic pair of Enterobacter aerogenes strains (wild type and a CZ-resistant derepressed mutant), and a Klebsiella pneumoniae isolate possessing a TEM-10 beta-lactamase were investigated in a two-compartment pharmacodynamic in vitro infection model which simulates human pharmacokinetics. An inoculum of approximately 10(6) CFU/ml was used in all model experiments. Antibiotics were administered to simulate the following regimens: CP at 2 g every 12 h (q12h), CZ at 2 g q8h, CTX at 2 g q8h, and CAX at 2 g q24h. Human albumin was added during experiments with CAX and staphylococci to simulate protein binding. Samples were removed at multiple time points over a 48-h period to determine the inoculum size for time-kill curves. Development of resistance was detected by inoculating samples obtained at 0, 24, and 48 h onto antibiotic-containing agar plates. The time to 99.9% killing was used to compare drug regimens. Against staphylococci, the time to bacterial eradication was significantly delayed with CAX-albumin. All regimens had similar activities against the wild-type Enterobacter strain; however, regrowth was noted with CZ, CTX, and CAX against the CZ-resistant strain. There were no differences between the CP, CTX, and CAX regimens against K. pneumoniae. Of interest, no regrowth of any organism was noted with CP. These data indicate that CP has activity against S.aureus and CZ-resistant gram-negative bacilli.

Full Text

The Full Text of this article is available as a PDF (374.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbhaiya R. H., Forgue S. T., Gleason C. R., Knupp C. A., Pittman K. A., Weidler D. J., Movahhed H., Tenney J., Martin R. R. Pharmacokinetics of cefepime after single and multiple intravenous administrations in healthy subjects. Antimicrob Agents Chemother. 1992 Mar;36(3):552–557. doi: 10.1128/aac.36.3.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbhaiya R. H., Forgue S. T., Shyu W. C., Papp E. A., Pittman K. A. High-pressure liquid chromatographic analysis of BMY-28142 in plasma and urine. Antimicrob Agents Chemother. 1987 Jan;31(1):55–59. doi: 10.1128/aac.31.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellido F., Pechère J. C., Hancock R. E. Reevaluation of the factors involved in the efficacy of new beta-lactams against Enterobacter cloacae. Antimicrob Agents Chemother. 1991 Jan;35(1):73–78. doi: 10.1128/aac.35.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bush K. Characterization of beta-lactamases. Antimicrob Agents Chemother. 1989 Mar;33(3):259–263. doi: 10.1128/aac.33.3.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bush K. Classification of beta-lactamases: groups 1, 2a, 2b, and 2b'. Antimicrob Agents Chemother. 1989 Mar;33(3):264–270. doi: 10.1128/aac.33.3.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Calain P., Krause K. H., Vaudaux P., Auckenthaler R., Lew D., Waldvogel F., Hirschel B. Early termination of a prospective, randomized trial comparing teicoplanin and flucloxacillin for treating severe staphylococcal infections. J Infect Dis. 1987 Feb;155(2):187–191. doi: 10.1093/infdis/155.2.187. [DOI] [PubMed] [Google Scholar]
  7. Chambers H. F., Mills J., Drake T. A., Sande M. A. Failure of a once-daily regimen of cefonicid for treatment of endocarditis due to Staphylococcus aureus. Rev Infect Dis. 1984 Nov-Dec;6 (Suppl 4):S870–S874. doi: 10.1093/clinids/6.supplement_4.s870. [DOI] [PubMed] [Google Scholar]
  8. Chow J. W., Fine M. J., Shlaes D. M., Quinn J. P., Hooper D. C., Johnson M. P., Ramphal R., Wagener M. M., Miyashiro D. K., Yu V. L. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med. 1991 Oct 15;115(8):585–590. doi: 10.7326/0003-4819-115-8-585. [DOI] [PubMed] [Google Scholar]
  9. Drusano G. L. Role of pharmacokinetics in the outcome of infections. Antimicrob Agents Chemother. 1988 Mar;32(3):289–297. doi: 10.1128/aac.32.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dudley M. N., Blaser J., Gilbert D., Zinner S. H. Significance of "extravascular" protein binding for antimicrobial pharmacodynamics in an in vitro capillary model of infection. Antimicrob Agents Chemother. 1990 Jan;34(1):98–101. doi: 10.1128/aac.34.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fung-Tomc J., Dougherty T. J., DeOrio F. J., Simich-Jacobson V., Kessler R. E. Activity of cefepime against ceftazidime- and cefotaxime-resistant gram-negative bacteria and its relationship to beta-lactamase levels. Antimicrob Agents Chemother. 1989 Apr;33(4):498–502. doi: 10.1128/aac.33.4.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haag R., Lexa P., Werkhäuser I. Artifacts in dilution pharmacokinetic models caused by adherent bacteria. Antimicrob Agents Chemother. 1986 May;29(5):765–768. doi: 10.1128/aac.29.5.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones R. N., Barry A. L. Antimicrobial activity of ceftriaxone, cefotaxime, desacetylcefotaxime, and cefotaxime-desacetylcefotaxime in the presence of human serum. Antimicrob Agents Chemother. 1987 May;31(5):818–820. doi: 10.1128/aac.31.5.818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jungbluth G. L., Jusko W. J. Ion-paired reversed-phase high-performance liquid chromatography assay for determination of ceftriaxone in human plasma and urine. J Pharm Sci. 1989 Nov;78(11):968–970. doi: 10.1002/jps.2600781118. [DOI] [PubMed] [Google Scholar]
  15. LeBel M., Barbeau G., Vallee F., Bergeron M. G. Pharmacokinetics of ceftazidime in elderly volunteers. Antimicrob Agents Chemother. 1985 Nov;28(5):713–715. doi: 10.1128/aac.28.5.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lüthy R., Münch R., Blaser J., Bhend H., Siegenthaler W. Human pharmacology of cefotaxime (HR 756), a new cephalosporin. Antimicrob Agents Chemother. 1979 Aug;16(2):127–133. doi: 10.1128/aac.16.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McGrath B. J., Bailey E. M., Lamp K. C., Rybak M. J. Pharmacodynamics of once-daily amikacin in various combinations with cefepime, aztreonam, and ceftazidime against Pseudomonas aeruginosa in an in vitro infection model. Antimicrob Agents Chemother. 1992 Dec;36(12):2741–2746. doi: 10.1128/aac.36.12.2741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Merrikin D. J., Briant J., Rolinson G. N. Effect of protein binding on antibiotic activity in vivo. J Antimicrob Chemother. 1983 Mar;11(3):233–238. doi: 10.1093/jac/11.3.233. [DOI] [PubMed] [Google Scholar]
  19. Meyer K. S., Urban C., Eagan J. A., Berger B. J., Rahal J. J. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann Intern Med. 1993 Sep 1;119(5):353–358. doi: 10.7326/0003-4819-119-5-199309010-00001. [DOI] [PubMed] [Google Scholar]
  20. Naumovski L., Quinn J. P., Miyashiro D., Patel M., Bush K., Singer S. B., Graves D., Palzkill T., Arvin A. M. Outbreak of ceftazidime resistance due to a novel extended-spectrum beta-lactamase in isolates from cancer patients. Antimicrob Agents Chemother. 1992 Sep;36(9):1991–1996. doi: 10.1128/aac.36.9.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nikaido H., Liu W., Rosenberg E. Y. Outer membrane permeability and beta-lactamase stability of dipolar ionic cephalosporins containing methoxyimino substituents. Antimicrob Agents Chemother. 1990 Feb;34(2):337–342. doi: 10.1128/aac.34.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Patel I. H., Chen S., Parsonnet M., Hackman M. R., Brooks M. A., Konikoff J., Kaplan S. A. Pharmacokinetics of ceftriaxone in humans. Antimicrob Agents Chemother. 1981 Nov;20(5):634–641. doi: 10.1128/aac.20.5.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Quinn J. P., Miyashiro D., Sahm D., Flamm R., Bush K. Novel plasmid-mediated beta-lactamase (TEM-10) conferring selective resistance to ceftazidime and aztreonam in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1989 Sep;33(9):1451–1456. doi: 10.1128/aac.33.9.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rice L. B., Willey S. H., Papanicolaou G. A., Medeiros A. A., Eliopoulos G. M., Moellering R. C., Jr, Jacoby G. A. Outbreak of ceftazidime resistance caused by extended-spectrum beta-lactamases at a Massachusetts chronic-care facility. Antimicrob Agents Chemother. 1990 Nov;34(11):2193–2199. doi: 10.1128/aac.34.11.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Richards D. M., Brogden R. N. Ceftazidime. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1985 Feb;29(2):105–161. doi: 10.2165/00003495-198529020-00002. [DOI] [PubMed] [Google Scholar]
  26. Sanders C. C., Sanders W. E., Jr Type I beta-lactamases of gram-negative bacteria: interactions with beta-lactam antibiotics. J Infect Dis. 1986 Nov;154(5):792–800. doi: 10.1093/infdis/154.5.792. [DOI] [PubMed] [Google Scholar]
  27. Sanders C. C., Sanders W. E., Jr beta-Lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin Infect Dis. 1992 Nov;15(5):824–839. doi: 10.1093/clind/15.5.824. [DOI] [PubMed] [Google Scholar]
  28. Stoeckel K., McNamara P. J., Brandt R., Plozza-Nottebrock H., Ziegler W. H. Effects of concentration-dependent plasma protein binding on ceftriaxone kinetics. Clin Pharmacol Ther. 1981 May;29(5):650–657. doi: 10.1038/clpt.1981.90. [DOI] [PubMed] [Google Scholar]
  29. Vu H., Nikaido H. Role of beta-lactam hydrolysis in the mechanism of resistance of a beta-lactamase-constitutive Enterobacter cloacae strain to expanded-spectrum beta-lactams. Antimicrob Agents Chemother. 1985 Mar;27(3):393–398. doi: 10.1128/aac.27.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wise R. The clinical relevance of protein binding and tissue concentrations in antimicrobial therapy. Clin Pharmacokinet. 1986 Nov-Dec;11(6):470–482. doi: 10.2165/00003088-198611060-00004. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES