Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Sep;39(9):1913–1919. doi: 10.1128/aac.39.9.1913

Transglutaminase-catalyzed reaction is important for molting of Onchocerca volvulus third-stage larvae.

S Lustigman 1, B Brotman 1, T Huima 1, A L Castelhano 1, R N Singh 1, K Mehta 1, A M Prince 1
PMCID: PMC162856  PMID: 8540691

Abstract

Highly insoluble proteins, which are probably cross-linked, are common in the cuticle and epicuticle of filarial parasites and other nematode species. We have investigated the possible involvement of transglutaminase (TGase)-catalyzed reactions in the development of Onchocerca volvulus fourth-stage larvae (L4) by testing the effects of TGase inhibitors on the survival of third-stage larvae (L3) and the molting of L3 to L4 in vitro. The larvae were cultured in the presence of three specific TGase inhibitors: monodansylcadaverine, cystamine, and N-benzyloxycarbonyl-D,L-beta-(3-bromo-4,5-dihydroisoxazol-5-yl)-al anine benzylamide. None of the inhibitors reduced the viability of either L3 or L4. However, the inhibitors reduced, in a time- and dose-dependent manner, the number of L3 that molted to L4 in vitro. Molting was completely inhibited in the presence of 100 to 200 microM inhibitors. Ultrastructural examination of L3 that did not molt in the presence of monodansylcadaverine or cystamine indicated that the new L4 cuticle was synthesized, but there was an incomplete separation between the L3 cuticle and the L4 epicuticle. The product of the TGase-catalyzed reaction was localized in molting L3 to cuticle regions where the separation between the old and new cuticles occurs and in the amphids of L3 by a monoclonal antibody that reacts specifically with the isopeptide epsilon-(gamma-glutamyl)lysine. These studies suggest that molting and successful development of L4 also depends on TGase-catalyzed reactions.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aeschlimann D., Paulsson M. Transglutaminases: protein cross-linking enzymes in tissues and body fluids. Thromb Haemost. 1994 Apr;71(4):402–415. [PubMed] [Google Scholar]
  2. Auger M., McDermott A. E., Robinson V., Castelhano A. L., Billedeau R. J., Pliura D. H., Krantz A., Griffin R. G. Solid-state 13C NMR study of a transglutaminase-inhibitor adduct. Biochemistry. 1993 Apr 20;32(15):3930–3934. doi: 10.1021/bi00066a012. [DOI] [PubMed] [Google Scholar]
  3. Bowness J. M., Folk J. E., Timpl R. Identification of a substrate site for liver transglutaminase on the aminopropeptide of type III collagen. J Biol Chem. 1987 Jan 25;262(3):1022–1024. [PubMed] [Google Scholar]
  4. Comley J. C., Townson S., Rees M. J., Dobinson A. The further application of MTT-formazan colorimetry to studies on filarial worm viability. Trop Med Parasitol. 1989 Sep;40(3):311–316. [PubMed] [Google Scholar]
  5. Cox G. N., Kusch M., Edgar R. S. Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J Cell Biol. 1981 Jul;90(1):7–17. doi: 10.1083/jcb.90.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Delves C. J., Webb R., Howells R. E. Neurosecretory-like material in 3rd- and 4th-stage Dirofilaria immitis larvae (Nematoda: Filarioidea). Parasitology. 1989 Aug;99(Pt 1):99–104. doi: 10.1017/s0031182000061072. [DOI] [PubMed] [Google Scholar]
  7. Eisenbeiss W. F., Apfel H., Meyer T. F. Protective immunity linked with a distinct developmental stage of a filarial parasite. J Immunol. 1994 Jan 15;152(2):735–742. [PubMed] [Google Scholar]
  8. Fetterer R. H., Rhoads M. L. Biochemistry of the nematode cuticle: relevance to parasitic nematodes of livestock. Vet Parasitol. 1993 Feb;46(1-4):103–111. doi: 10.1016/0304-4017(93)90051-n. [DOI] [PubMed] [Google Scholar]
  9. Fetterer R. H., Rhoads M. L. Tyrosine-derived cross-linking amino acids in the sheath of Haemonchus contortus infective larvae. J Parasitol. 1990 Oct;76(5):619–624. [PubMed] [Google Scholar]
  10. Fetterer R. H. The cuticular proteins from free-living and parasitic stages of Haemonchus contortus--I. Isolation and partial characterization. Comp Biochem Physiol B. 1989;94(2):383–388. doi: 10.1016/0305-0491(89)90360-x. [DOI] [PubMed] [Google Scholar]
  11. Folk J. E. Transglutaminases. Annu Rev Biochem. 1980;49:517–531. doi: 10.1146/annurev.bi.49.070180.002505. [DOI] [PubMed] [Google Scholar]
  12. Fujimoto D., Horiuchi K., Hirama M. Isotrityrosine, a new crosslinking amino acid isolated from Ascaris cuticle collagen. Biochem Biophys Res Commun. 1981 Mar 31;99(2):637–643. doi: 10.1016/0006-291x(81)91792-7. [DOI] [PubMed] [Google Scholar]
  13. Fujimoto D., Kanaya S. Cuticlin: a noncollagen structural protein from Ascaris cuticle. Arch Biochem Biophys. 1973 Jul;157(1):1–6. doi: 10.1016/0003-9861(73)90382-2. [DOI] [PubMed] [Google Scholar]
  14. Ginger C. D. Filarial worms: targets for drugs. Parasitol Today. 1991 Oct;7(10):262–264. doi: 10.1016/0169-4758(91)90089-7. [DOI] [PubMed] [Google Scholar]
  15. Greenberg C. S., Birckbichler P. J., Rice R. H. Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J. 1991 Dec;5(15):3071–3077. doi: 10.1096/fasebj.5.15.1683845. [DOI] [PubMed] [Google Scholar]
  16. Greene B. M. Modern medicine versus an ancient scourge: progress toward control of onchocerciasis. J Infect Dis. 1992 Jul;166(1):15–21. doi: 10.1093/infdis/166.1.15. [DOI] [PubMed] [Google Scholar]
  17. Jeleńska M. M., Fesüs L., Kopeć M. The comparative ability of plasma and tissue transglutaminases to use collagen as a substrate. Biochim Biophys Acta. 1980 Dec 4;616(2):167–178. doi: 10.1016/0005-2744(80)90135-7. [DOI] [PubMed] [Google Scholar]
  18. Juprelle-Soret M., Wattiaux-De Coninck S., Wattiaux R. Subcellular localization of transglutaminase. Effect of collagen. Biochem J. 1988 Mar 1;250(2):421–427. doi: 10.1042/bj2500421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lichti U., Ben T., Yuspa S. H. Retinoic acid-induced transglutaminase in mouse epidermal cells is distinct from epidermal transglutaminase. J Biol Chem. 1985 Feb 10;260(3):1422–1426. [PubMed] [Google Scholar]
  21. Lok J. B., Morris R. A., Sani B. P., Shealy Y. F., Donnelly J. J. Synthetic and naturally occurring retinoids inhibit third- to fourth-stage larval development by Onchocerca lienalis in vitro. Trop Med Parasitol. 1990 Jun;41(2):169–173. [PubMed] [Google Scholar]
  22. Lorand L., Parameswaran K. N., Stenberg P., Tong Y. S., Velasco P. T., Jönsson N. A., Mikiver L., Moses P. Specificity of guinea pig liver transglutaminase for amine substrates. Biochemistry. 1979 May 1;18(9):1756–1765. doi: 10.1021/bi00576a019. [DOI] [PubMed] [Google Scholar]
  23. Lustigman S., Brotman B., Huima T., Prince A. M. Characterization of an Onchocerca volvulus cDNA clone encoding a genus specific antigen present in infective larvae and adult worms. Mol Biochem Parasitol. 1991 Mar;45(1):65–75. doi: 10.1016/0166-6851(91)90028-5. [DOI] [PubMed] [Google Scholar]
  24. Lustigman S., Huima T., Brotman B., Miller K., Prince A. M. Onchocerca volvulus: biochemical and morphological characteristics of the surface of third- and fourth-stage larvae. Exp Parasitol. 1990 Nov;71(4):489–495. doi: 10.1016/0014-4894(90)90075-n. [DOI] [PubMed] [Google Scholar]
  25. Lustigman S. Molting, enzymes and new targets for chemotherapy of Onchocerca volvulus. Parasitol Today. 1993 Aug;9(8):294–297. doi: 10.1016/0169-4758(93)90128-3. [DOI] [PubMed] [Google Scholar]
  26. Mehta K., Rao U. R., Vickery A. C., Fesus L. Identification of a novel transglutaminase from the filarial parasite Brugia malayi and its role in growth and development. Mol Biochem Parasitol. 1992 Jul;53(1-2):1–15. doi: 10.1016/0166-6851(92)90002-2. [DOI] [PubMed] [Google Scholar]
  27. Miller K. M., Hotze C., Brotman B., Prince A. M. An economical procedure for screening of hybridoma supernatants for surface reactive antibodies to filarial larvae. Trop Med Parasitol. 1990 Jun;41(2):221–222. [PubMed] [Google Scholar]
  28. Rao U. R., Mehta K., Subrahmanyam D., Vickery A. C. Brugia malayi and Acanthocheilonema viteae: antifilarial activity of transglutaminase inhibitors in vitro. Antimicrob Agents Chemother. 1991 Nov;35(11):2219–2224. doi: 10.1128/aac.35.11.2219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rubin A. L., Rice R. H. Differential regulation by retinoic acid and calcium of transglutaminases in cultured neoplastic and normal human keratinocytes. Cancer Res. 1986 May;46(5):2356–2361. [PubMed] [Google Scholar]
  30. Sakura S., Fujimoto D. Absorption and fluorescence study of tyrosine-derived crosslinking amino acids from collagen. Photochem Photobiol. 1984 Dec;40(6):731–734. doi: 10.1111/j.1751-1097.1984.tb04644.x. [DOI] [PubMed] [Google Scholar]
  31. Selkirk M. E., Blaxter M. L. Cuticular proteins of Brugia filarial parasites. Acta Trop. 1990 Jul;47(5-6):373–380. doi: 10.1016/0001-706x(90)90038-2. [DOI] [PubMed] [Google Scholar]
  32. Selkirk M. E., Maizels R. M., Yazdanbakhsh M. Immunity and the prospects for vaccination against filariasis. Immunobiology. 1992 Feb;184(2-3):263–281. doi: 10.1016/S0171-2985(11)80479-1. [DOI] [PubMed] [Google Scholar]
  33. Selkirk M. E., Nielsen L., Kelly C., Partono F., Sayers G., Maizels R. M. Identification, synthesis and immunogenicity of cuticular collagens from the filarial nematodes Brugia malayi and Brugia pahangi. Mol Biochem Parasitol. 1989 Jan 15;32(2-3):229–246. doi: 10.1016/0166-6851(89)90073-x. [DOI] [PubMed] [Google Scholar]
  34. Singh R. N., Mehta K. Purification and characterization of a novel transglutaminase from filarial nematode Brugia malayi. Eur J Biochem. 1994 Oct 15;225(2):625–634. doi: 10.1111/j.1432-1033.1994.00625.x. [DOI] [PubMed] [Google Scholar]
  35. Slaughter T. F., Achyuthan K. E., Lai T. S., Greenberg C. S. A microtiter plate transglutaminase assay utilizing 5-(biotinamido)pentylamine as substrate. Anal Biochem. 1992 Aug 15;205(1):166–171. doi: 10.1016/0003-2697(92)90594-w. [DOI] [PubMed] [Google Scholar]
  36. Strote G., Bonow I. Ultrastructural observations on the nervous system and the sensory organs of the infective stage (L3) of Onchocerca volvulus (Nematoda: Filarioidea). Parasitol Res. 1993;79(3):213–220. doi: 10.1007/BF00931895. [DOI] [PubMed] [Google Scholar]
  37. Tanaka H., Shinki T., Takito J., Jin C. H., Suda T. Transglutaminase is involved in the fusion of mouse alveolar macrophages induced by 1 alpha, 25-dihydroxyvitamin D3. Exp Cell Res. 1991 Jan;192(1):165–172. doi: 10.1016/0014-4827(91)90171-p. [DOI] [PubMed] [Google Scholar]
  38. Tarcsa E., Eckerstorfer M., Breitenbach M., Hintz M., Schott H. H., Zahner H., Stirm S. Epsilon-(gamma-glutamyl)lysine cross-links in Litomosoides carinii microfilarial sheaths. Parasitol Res. 1992;78(7):623–624. doi: 10.1007/BF00936464. [DOI] [PubMed] [Google Scholar]
  39. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. el Alaoui S., Legastelois S., Roch A. M., Chantepie J., Quash G. Transglutaminase activity and N epsilon (gamma glutamyl) lysine isopeptide levels during cell growth: an enzymic and immunological study. Int J Cancer. 1991 May 10;48(2):221–226. doi: 10.1002/ijc.2910480212. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES