Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Sep;39(9):1920–1924. doi: 10.1128/aac.39.9.1920

Cloning and characterization of a novel, plasmid-encoded trimethoprim-resistant dihydrofolate reductase from Staphylococcus haemolyticus MUR313.

G E Dale 1, H Langen 1, M G Page 1, R L Then 1, D Stüber 1
PMCID: PMC162857  PMID: 8540692

Abstract

In recent years resistance to the antibacterial agent trimethoprim (Tmp) has become more widespread, and several trimethoprim-resistant (Tmpr) dihydrofolate reductases (DHFRs) have been described from gram-negative bacteria. In staphylococci, only one Tmpr DHFR has been described, the type S1 DHFR, which is encoded by the dfrA gene found on transposon Tn4003. In order to investigate the coincidence of high-level Tmp resistance and the presence of dfrA, we analyzed the DNAs from various Tmpr staphylococci for the presence of dfrA sequences by PCR with primers specific for the thyE-dfrA genes from Tn4003. We found that 30 or 33 isolates highly resistant to Tmp (MICs, > or = 512 micrograms/ml) contained dfrA sequences, whereas among the Tmpr (MICs, < or = 256 micrograms/ml) and Tmps isolates only the Staphylococcus epidermidis isolates (both Tmpr and Tmps) seemed to contain the dfrA gene. Furthermore, we have cloned and characterized a novel, plasmid-encoded Tmpr DHFR from Staphylococcus haemolyticus MUR313. The dfrD gene of plasmid pABU17 is preceded by two putative Shine-Dalgarno sequences potentially allowing for the start of translation at two triplets separated by nine nucleotides. The predicted protein of 166 amino acids, designated S2DHFR, encoded by the longer open reading frame was overproduced in Escherichia coli, purified, and characterized. The molecular size of the recombinant S2DHFR was determined by ion spray mass spectrometry to be 19,821.2 +/- 2 Da, which is in agreement with the theoretical value of 19,822 Da. In addition, the recombinant S2DHFR was shown to exhibit DHFR activity and to be highly resistant to Tmp.

Full Text

The Full Text of this article is available as a PDF (295.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleman J. R., Tsay J. T., Freisheim J. H., Blakley R. L. Effect of enzyme and ligand protonation on the binding of folates to recombinant human dihydrofolate reductase: implications for the evolution of eukaryotic enzyme efficiency. Biochemistry. 1992 Apr 14;31(14):3709–3715. doi: 10.1021/bi00129a021. [DOI] [PubMed] [Google Scholar]
  2. Archer G. L., Coughter J. P., Johnston J. L. Plasmid-encoded trimethoprim resistance in staphylococci. Antimicrob Agents Chemother. 1986 May;29(5):733–740. doi: 10.1128/aac.29.5.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Archer G. L., Niemeyer D. M., Thanassi J. A., Pucci M. J. Dissemination among staphylococci of DNA sequences associated with methicillin resistance. Antimicrob Agents Chemother. 1994 Mar;38(3):447–454. doi: 10.1128/aac.38.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baccanari D. P., Joyner S. S. Dihydrofolate reductase hysteresis and its effect of inhibitor binding analyses. Biochemistry. 1981 Mar 31;20(7):1710–1716. doi: 10.1021/bi00510a002. [DOI] [PubMed] [Google Scholar]
  5. Bennett P. M., Heritage J., Hawkey P. M. An ultra-rapid method for the study of antibiotic resistance plasmids. J Antimicrob Chemother. 1986 Sep;18(3):421–424. doi: 10.1093/jac/18.3.421. [DOI] [PubMed] [Google Scholar]
  6. Bolin J. T., Filman D. J., Matthews D. A., Hamlin R. C., Kraut J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. I. General features and binding of methotrexate. J Biol Chem. 1982 Nov 25;257(22):13650–13662. [PubMed] [Google Scholar]
  7. Burdeska A., Ott M., Bannwarth W., Then R. L. Identical genes for trimethoprim-resistant dihydrofolate reductase from Staphylococcus aureus in Australia and central Europe. FEBS Lett. 1990 Jun 18;266(1-2):159–162. doi: 10.1016/0014-5793(90)81529-w. [DOI] [PubMed] [Google Scholar]
  8. Cohen M. L. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science. 1992 Aug 21;257(5073):1050–1055. doi: 10.1126/science.257.5073.1050. [DOI] [PubMed] [Google Scholar]
  9. Coughter J. P., Johnston J. L., Archer G. L. Characterization of a staphylococcal trimethoprim resistance gene and its product. Antimicrob Agents Chemother. 1987 Jul;31(7):1027–1032. doi: 10.1128/aac.31.7.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dale G. E., Broger C., Hartman P. G., Langen H., Page M. G., Then R. L., Stüber D. Characterization of the gene for the chromosomal dihydrofolate reductase (DHFR) of Staphylococcus epidermidis ATCC 14990: the origin of the trimethoprim-resistant S1 DHFR from Staphylococcus aureus? J Bacteriol. 1995 Jun;177(11):2965–2970. doi: 10.1128/jb.177.11.2965-2970.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dale G. E., Schönfeld H. J., Langen H., Stieger M. Increased solubility of trimethoprim-resistant type S1 DHFR from Staphylococcus aureus in Escherichia coli cells overproducing the chaperonins GroEL and GroES. Protein Eng. 1994 Jul;7(7):925–931. doi: 10.1093/protein/7.7.925. [DOI] [PubMed] [Google Scholar]
  12. Dale G. E., Then R. L., Stüber D. Characterization of the gene for chromosomal trimethoprim-sensitive dihydrofolate reductase of Staphylococcus aureus ATCC 25923. Antimicrob Agents Chemother. 1993 Jul;37(7):1400–1405. doi: 10.1128/aac.37.7.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Filman D. J., Bolin J. T., Matthews D. A., Kraut J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. II. Environment of bound NADPH and implications for catalysis. J Biol Chem. 1982 Nov 25;257(22):13663–13672. [PubMed] [Google Scholar]
  15. Froggatt J. W., Johnston J. L., Galetto D. W., Archer G. L. Antimicrobial resistance in nosocomial isolates of Staphylococcus haemolyticus. Antimicrob Agents Chemother. 1989 Apr;33(4):460–466. doi: 10.1128/aac.33.4.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Galetto D. W., Johnston J. L., Archer G. L. Molecular epidemiology of trimethoprim resistance among coagulase-negative staphylococci. Antimicrob Agents Chemother. 1987 Nov;31(11):1683–1688. doi: 10.1128/aac.31.11.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Iwakura M., Kawata M., Tsuda K., Tanaka T. Nucleotide sequence of the thymidylate synthase B and dihydrofolate reductase genes contained in one Bacillus subtilis operon. Gene. 1988 Apr 15;64(1):9–20. doi: 10.1016/0378-1119(88)90476-3. [DOI] [PubMed] [Google Scholar]
  18. Jacoby G. A., Archer G. L. New mechanisms of bacterial resistance to antimicrobial agents. N Engl J Med. 1991 Feb 28;324(9):601–612. doi: 10.1056/NEJM199102283240906. [DOI] [PubMed] [Google Scholar]
  19. Levitz R. E., Quintiliani R. Trimethoprim-sulfamethoxazole for bacterial meningitis. Ann Intern Med. 1984 Jun;100(6):881–890. doi: 10.7326/0003-4819-100-6-881. [DOI] [PubMed] [Google Scholar]
  20. Lyon B. R., May J. W., Skurray R. A. Analysis of plasmids in nosocomial strains of multiple-antibiotic-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1983 Jun;23(6):817–826. doi: 10.1128/aac.23.6.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lyon B. R., Skurray R. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev. 1987 Mar;51(1):88–134. doi: 10.1128/mr.51.1.88-134.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matthews D. A., Bolin J. T., Burridge J. M., Filman D. J., Volz K. W., Kaufman B. T., Beddell C. R., Champness J. N., Stammers D. K., Kraut J. Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim. J Biol Chem. 1985 Jan 10;260(1):381–391. [PubMed] [Google Scholar]
  23. Matthews D. A., Bolin J. T., Burridge J. M., Filman D. J., Volz K. W., Kraut J. Dihydrofolate reductase. The stereochemistry of inhibitor selectivity. J Biol Chem. 1985 Jan 10;260(1):392–399. [PubMed] [Google Scholar]
  24. Neu H. C. The crisis in antibiotic resistance. Science. 1992 Aug 21;257(5073):1064–1073. doi: 10.1126/science.257.5073.1064. [DOI] [PubMed] [Google Scholar]
  25. Rouch D. A., Messerotti L. J., Loo L. S., Jackson C. A., Skurray R. A. Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Mol Microbiol. 1989 Feb;3(2):161–175. doi: 10.1111/j.1365-2958.1989.tb01805.x. [DOI] [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith D. R., Calvo J. M. Nucleotide sequence of the E coli gene coding for dihydrofolate reductase. Nucleic Acids Res. 1980 May 24;8(10):2255–2274. doi: 10.1093/nar/8.10.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Swartz M. N. Hospital-acquired infections: diseases with increasingly limited therapies. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2420–2427. doi: 10.1073/pnas.91.7.2420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Then R. L., Kohl I., Burdeska A. Frequency and transferability of trimethoprim and sulfonamide resistance in methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. J Chemother. 1992 Apr;4(2):67–71. doi: 10.1080/1120009x.1992.11739142. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES