Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Sep;39(9):1959–1964. doi: 10.1128/aac.39.9.1959

Relevance of Chlamydia pneumoniae murine pneumonitis model to evaluation of antimicrobial agents.

N D Masson 1, C D Toseland 1, A S Beale 1
PMCID: PMC162863  PMID: 8540698

Abstract

A mouse model of Chlamydia pneumoniae pneumonitis was established in outbred MF1 mice immunosuppressed with cyclophosphamide. Following intranasal inoculation with 2.2 x 10(3) inclusion-forming units of C. pneumoniae TW-183 per mouse, chlamydiae were culturable from the lungs for at least 29 days. Progressive subacute pneumonitis with perivascular and peribronchial lymphoid cell hyperplasia was observed, and C. pneumoniae organisms were located in consolidated areas of tissue by immunocytochemistry. Mice were treated orally, commencing at 8 days after infection, with clinically achievable concentrations of amoxicillin-clavulanate or ciprofloxacin (three times daily for 7 days), ofloxacin, doxycycline, or erythromycin (twice daily for 7 days), or azithromycin (once daily for 4 days). Despite disparate antichlamydial activity in cell culture and different pharmacokinetic properties in infected animals, all treatments reduced the chlamydial load in the lungs (P < 0.05) when the loads were evaluated by culture at 1 and 10 days after the cessation of dosing, and this was reflected in the histopathological and immunocytochemistry scores. There was no significant difference between these treatments, and C. pneumoniae TW-183 was eradicated from the majority but not from all mice. These results confirm the limited clinical data available to date. In conclusion, a range of oral antimicrobial agents commonly used for the treatment of community-acquired respiratory infection was found to be efficacious in this experimental model of C. pneumoniae pneumonitis, which may therefore be of utility in chemotherapy and follow-up studies.

Full Text

The Full Text of this article is available as a PDF (826.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beale A. S., Masson N. D. Susceptibility of Chlamydia pneumoniae to oral agents commonly used in the treatment of respiratory infection. J Antimicrob Chemother. 1994 Dec;34(6):1072–1074. doi: 10.1093/jac/34.6.1072. [DOI] [PubMed] [Google Scholar]
  2. Beale A. S., Upshon P. A. Characteristics of murine model of genital infection with Chlamydia trachomatis and effects of therapy with tetracyclines, amoxicillin-clavulanic acid, or azithromycin. Antimicrob Agents Chemother. 1994 Sep;38(9):1937–1943. doi: 10.1128/aac.38.9.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braun J., Laitko S., Treharne J., Eggens U., Wu P., Distler A., Sieper J. Chlamydia pneumoniae--a new causative agent of reactive arthritis and undifferentiated oligoarthritis. Ann Rheum Dis. 1994 Feb;53(2):100–105. doi: 10.1136/ard.53.2.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grayston J. T., Kuo C. C., Wang S. P., Altman J. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med. 1986 Jul 17;315(3):161–168. doi: 10.1056/NEJM198607173150305. [DOI] [PubMed] [Google Scholar]
  5. Hammerschlag M. R. Antimicrobial susceptibility and therapy of infections caused by Chlamydia pneumoniae. Antimicrob Agents Chemother. 1994 Sep;38(9):1873–1878. doi: 10.1128/aac.38.9.1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hammerschlag M. R., Hyman C. L., Roblin P. M. In vitro activities of five quinolones against Chlamydia pneumoniae. Antimicrob Agents Chemother. 1992 Mar;36(3):682–683. doi: 10.1128/aac.36.3.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hammerschlag M. R., Qumei K. K., Roblin P. M. In vitro activities of azithromycin, clarithromycin, L-ofloxacin, and other antibiotics against Chlamydia pneumoniae. Antimicrob Agents Chemother. 1992 Jul;36(7):1573–1574. doi: 10.1128/aac.36.7.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kaukoranta-Tolvanen S. S., Laurila A. L., Saikku P., Leinonen M., Liesirova L., Laitinen K. Experimental infection of Chlamydia pneumoniae in mice. Microb Pathog. 1993 Oct;15(4):293–302. doi: 10.1006/mpat.1993.1079. [DOI] [PubMed] [Google Scholar]
  9. Kuo C. C., Chen H. H., Wang S. P., Grayston J. T. Identification of a new group of Chlamydia psittaci strains called TWAR. J Clin Microbiol. 1986 Dec;24(6):1034–1037. doi: 10.1128/jcm.24.6.1034-1037.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuo C. C., Grayston J. T. In vitro drug susceptibility of Chlamydia sp. strain TWAR. Antimicrob Agents Chemother. 1988 Feb;32(2):257–258. doi: 10.1128/aac.32.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lipsky B. A., Tack K. J., Kuo C. C., Wang S. P., Grayston J. T. Ofloxacin treatment of Chlamydia pneumoniae (strain TWAR) lower respiratory tract infections. Am J Med. 1990 Dec;89(6):722–724. doi: 10.1016/0002-9343(90)90212-v. [DOI] [PubMed] [Google Scholar]
  12. Lopes-Virella M. F. Interactions between bacterial lipopolysaccharides and serum lipoproteins and their possible role in coronary heart disease. Eur Heart J. 1993 Dec;14 (Suppl K):118–124. [PubMed] [Google Scholar]
  13. Malinverni R., Kuo C. C., Campbell L. A., Lee A., Grayston J. T. Effects of two antibiotic regimens on course and persistence of experimental Chlamydia pneumoniae TWAR pneumonitis. Antimicrob Agents Chemother. 1995 Jan;39(1):45–49. doi: 10.1128/aac.39.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nakata K., Okazaki Y., Hattori H., Nakamura S. Protective effects of sparfloxacin in experimental pneumonia caused by Chlamydia pneumoniae in leukopenic mice. Antimicrob Agents Chemother. 1994 Aug;38(8):1757–1762. doi: 10.1128/aac.38.8.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ridgway G. L. Advances in the antimicrobial therapy of chlamydial genital infections. J Infect. 1992 Jul;25 (Suppl 1):51–59. doi: 10.1016/0163-4453(92)92037-j. [DOI] [PubMed] [Google Scholar]
  16. Roblin P. M., Montalban G., Hammerschlag M. R. Susceptibilities to clarithromycin and erythromycin of isolates of Chlamydia pneumoniae from children with pneumonia. Antimicrob Agents Chemother. 1994 Jul;38(7):1588–1589. doi: 10.1128/aac.38.7.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thom D. H., Grayston J. T. Infections with Chlamydia pneumoniae strain TWAR. Clin Chest Med. 1991 Jun;12(2):245–256. [PubMed] [Google Scholar]
  18. Torres A., el-Ebiary M. Relevance of Chlamydia pneumoniae in community-acquired respiratory infections. Eur Respir J. 1993 Jan;6(1):7–8. [PubMed] [Google Scholar]
  19. Yang Z. P., Kuo C. C., Grayston J. T. A mouse model of Chlamydia pneumoniae strain TWAR pneumonitis. Infect Immun. 1993 May;61(5):2037–2040. doi: 10.1128/iai.61.5.2037-2040.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES