Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Sep;39(9):2068–2072. doi: 10.1128/aac.39.9.2068

Identification of daptomycin-binding proteins in the membrane of Enterococcus hirae.

M Boaretti 1, P Canepari 1
PMCID: PMC162882  PMID: 8540717

Abstract

Daptomycin, a lipopeptide antibiotic active against gram-positive bacteria, was preliminarily shown to inhibit lipoteichoic acid (LTA) synthesis as a consequence of membrane binding in the presence of Ca2+ (P. Canepari, M. Boaretti, M. M. Lleó, and G. Satta, Antimicrob. Agents Chemother. 34:1220-1226, 1990). In the present study, it is shown that, along with binding bacterial-membrane components, daptomycin binds the protein fraction with a noncovalent bond, as suggested by the instability of the bond in the presence of ionic detergents such as sodium dodecyl sulfate. Analysis of membrane proteins by isoelectric focusing electrophoresis reveals that five bands with isoelectric points ranging from 5.9 to 6.2 bind radioactive daptomycin. These proteins are therefore called daptomycin-binding proteins. In an attempt to correlate these proteins to the main inhibition observed during LTA synthesis, two-dimensional thin-layer chromatography of lipids synthesized during daptomycin treatment was performed. A threefold increase in diglucosyl diacylglycerol is demonstrated, while the compounds phosphatidyl-alpha-kojibiosyldiacylglycerol, glycerophospho-phosphatidyl-alpha-kojibiosyldiacylglycerol, and glycerophospho-kojibiosyldiacylglycerol, which follow diglucosyl diacylglycerol in LTA synthesis, decrease progressively with time during the course of daptomycin treatment.

Full Text

The Full Text of this article is available as a PDF (277.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen N. E., Hobbs J. N., Alborn W. E., Jr Inhibition of peptidoglycan biosynthesis in gram-positive bacteria by LY146032. Antimicrob Agents Chemother. 1987 Jul;31(7):1093–1099. doi: 10.1128/aac.31.7.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ames G. F., Nikaido K. Two-dimensional gel electrophoresis of membrane proteins. Biochemistry. 1976 Feb 10;15(3):616–623. doi: 10.1021/bi00648a026. [DOI] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Boaretti M., Canepari P., Lleò M. M., Satta G. The activity of daptomycin on Enterococcus faecium protoplasts: indirect evidence supporting a novel mode of action on lipoteichoic acid synthesis. J Antimicrob Chemother. 1993 Feb;31(2):227–235. doi: 10.1093/jac/31.2.227. [DOI] [PubMed] [Google Scholar]
  5. Cabacungan E., Pieringer R. A. Mode of elongation of the glycerol phosphate polymer of membrane lipoteichoic acid of Streptococcus faecium ATCC 9790. J Bacteriol. 1981 Jul;147(1):75–79. doi: 10.1128/jb.147.1.75-79.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Canepari P., Boaretti M., Lleó M. M., Satta G. Lipoteichoic acid as a new target for activity of antibiotics: mode of action of daptomycin (LY146032). Antimicrob Agents Chemother. 1990 Jun;34(6):1220–1226. doi: 10.1128/aac.34.6.1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carson D. D., Pieringer R. A., Daneo-Moore L. Effect of cerulenin on cellular autolytic activity and lipid metabolism during inhibition of protein synthesis in Streptococcus faecalis. J Bacteriol. 1981 May;146(2):590–604. doi: 10.1128/jb.146.2.590-604.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eliopoulos G. M., Willey S., Reiszner E., Spitzer P. G., Caputo G., Moellering R. C., Jr In vitro and in vivo activity of LY 146032, a new cyclic lipopeptide antibiotic. Antimicrob Agents Chemother. 1986 Oct;30(4):532–535. doi: 10.1128/aac.30.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ellwood D. C., Tempest D. W. Influence of culture pH on the content and composition of teichoic acids in the walls of Bacillus subtilis. J Gen Microbiol. 1972 Nov;73(2):395–402. doi: 10.1099/00221287-73-2-395. [DOI] [PubMed] [Google Scholar]
  10. Fischer W. D-alanine ester-containing glycerophosphoglycolipids in the membrane of gram-positive bacteria. Biochim Biophys Acta. 1982 May 13;711(2):372–375. doi: 10.1016/0005-2760(82)90048-0. [DOI] [PubMed] [Google Scholar]
  11. Fischer W., Ishizuka I., Landgraf H. R., Herrmann J. Glycerophosphoryl diglucosyl diglyceride, a new phosphoglycolipid from Streptococci. Biochim Biophys Acta. 1973 Mar 8;296(3):527–545. doi: 10.1016/0005-2760(73)90113-6. [DOI] [PubMed] [Google Scholar]
  12. Fischer W., Landgraf H. R. Glycerophosphoryl phosphatidyl kojibiosyl diacylglycerol, a novel phosphoglucolipid from Streptococcus faecalis. Biochim Biophys Acta. 1975 Feb 20;380(2):227–244. doi: 10.1016/0005-2760(75)90009-0. [DOI] [PubMed] [Google Scholar]
  13. Fischer W., Landgraf H. R., Herrmann J. Phosphatidyldiglucosyl diglyceride from Streptococci and its relationship to other polar lipids. Biochim Biophys Acta. 1973 Jun 21;306(3):353–367. doi: 10.1016/0005-2760(73)90174-4. [DOI] [PubMed] [Google Scholar]
  14. Fischer W. Physiology of lipoteichoic acids in bacteria. Adv Microb Physiol. 1988;29:233–302. doi: 10.1016/s0065-2911(08)60349-5. [DOI] [PubMed] [Google Scholar]
  15. Ganfield M. C., Pieringer R. A. The biosynthesis of nascent membrane lipoteichoic acid of Streptococcus faecium (S. faecalis ATCC 9790) from phosphatidylkojibiosyl diacylglycerol and phosphatidylglycerol. J Biol Chem. 1980 Jun 10;255(11):5164–5169. [PubMed] [Google Scholar]
  16. Huovinen P., Kotilainen P. In vitro activity of a new cyclic lipopeptide antibiotic, LY146032, against gram-positive clinical bacteria. Antimicrob Agents Chemother. 1987 Mar;31(3):455–457. doi: 10.1128/aac.31.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kessler R. E., Shockman G. D. Precursor-product relationship of intracellular and extracellular lipoteichoic acids of Streptococcus faecium. J Bacteriol. 1979 Feb;137(2):869–877. doi: 10.1128/jb.137.2.869-877.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ntamere A. S., Taron D. J., Neuhaus F. C. Assembly of D-alanyl-lipoteichoic acid in Lactobacillus casei: mutants deficient in the D-alanyl ester content of this amphiphile. J Bacteriol. 1987 Apr;169(4):1702–1711. doi: 10.1128/jb.169.4.1702-1711.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Spratt B. G. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2999–3003. doi: 10.1073/pnas.72.8.2999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vance D., Goldberg I., Mitsuhashi O., Bloch K. Inhibition of fatty acid synthetases by the antibiotic cerulenin. Biochem Biophys Res Commun. 1972 Aug 7;48(3):649–656. doi: 10.1016/0006-291x(72)90397-x. [DOI] [PubMed] [Google Scholar]
  21. Verbist L. In vitro activity of LY146032, a new lipopeptide antibiotic, against gram-positive cocci. Antimicrob Agents Chemother. 1987 Feb;31(2):340–342. doi: 10.1128/aac.31.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wicken A. J., Knox K. W. Characterization of group N streptococcus lipoteichoic acid. Infect Immun. 1975 May;11(5):973–981. doi: 10.1128/iai.11.5.973-981.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES