Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Sep;39(9):2104–2111. doi: 10.1128/aac.39.9.2104

Formulation and efficacy of liposome-encapsulated antibiotics for therapy of intracellular Mycobacterium avium infection.

Y K Oh 1, D E Nix 1, R M Straubinger 1
PMCID: PMC162889  PMID: 8540724

Abstract

Mycobacterium avium is an intracellular pathogen that can invade and multiply within macrophages of the reticuloendothelial system. Current therapy is not highly effective. Particulate drug carriers that are targeted to the reticuloendothelial system may provide a means to deliver antibiotics more efficiently to M. avium-infected cells. We investigated the formulation of the antibiotics ciprofloxacin and azithromycin in liposomes and tested their antibacterial activities in vitro against M. avium residing within J774, a murine macrophage-like cell line. A conventional passive-entrapment method yielded an encapsulation efficiency of 9% for ciprofloxacin and because of aggregation mediated by the cationic drug, was useful only with liposomes containing < or = 50 mol% negatively charged phospholipid. In contrast, ciprofloxacin was encapsulated with > 90% efficiency, regardless of the content of negatively charged lipids, by a remote-loading technique that utilized both pH and potential gradients to drive drug into preformed liposomes. Both the cellular accumulation and the antimycobacterial activity of ciprofloxacin increased in proportion to the liposome negative charge; the maximal enhancement of potency was 43-fold in liposomes of distearoylphosphatidylglycerol-cholesterol (DSPG-Chol) (10:5). Azithromycin liposomes were prepared as a freeze-dried preparation to avoid chemical instability during storage, and drug could be incorporated at 33 mol% (with respect to phospholipid). Azithromycin also showed enhanced antimycobacterial effect in liposomes, and the potency increased in parallel to the moles percent of negatively charged lipids; azithromycin in DSPG-Chol (10:5) liposomes inhibited intracellular M. avium growth 41-fold more effectively than did free azithromycin. Thus, ciprofloxacin or azithromycin encapsulated in stable liposomes having substantial negative surface charge is superior to nonencapsulated drug in inhibition of M.avium growth within cultured macrophages and may provide more effective therapy of M.avium infections.

Full Text

The Full Text of this article is available as a PDF (784.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Au W. W., Anwar W., Paolini M., Ramanujam S., Cantelli-Forti G. Mechanism of clastogenic and co-clastogenic activity of cremophore with benzene in mice. Carcinogenesis. 1991 Jan;12(1):53–57. doi: 10.1093/carcin/12.1.53. [DOI] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Brown S. T., Edwards F. F., Bernard E. M., Tong W., Armstrong D. Azithromycin, rifabutin, and rifapentine for treatment and prophylaxis of Mycobacterium avium complex in rats treated with cyclosporine. Antimicrob Agents Chemother. 1993 Mar;37(3):398–402. doi: 10.1128/aac.37.3.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chester A. C., Winn W. C., Jr Unusual and newly recognized patterns of nontuberculous mycobacterial infection with emphasis on the immunocompromised host. Pathol Annu. 1986;21(Pt 1):251–270. [PubMed] [Google Scholar]
  5. Cynamon M. H., Klemens S. P., Swenson C. E. TLC G-65 in combination with other agents in the therapy of Mycobacterium avium infection in beige mice. J Antimicrob Chemother. 1992 Jun;29(6):693–699. doi: 10.1093/jac/29.6.693. [DOI] [PubMed] [Google Scholar]
  6. Cynamon M. H., Swenson C. E., Palmer G. S., Ginsberg R. S. Liposome-encapsulated-amikacin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother. 1989 Aug;33(8):1179–1183. doi: 10.1128/aac.33.8.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dijkstra J., van Galen M., Regts D., Scherphof G. Uptake and processing of liposomal phospholipids by Kupffer cells in vitro. Eur J Biochem. 1985 Apr 15;148(2):391–397. doi: 10.1111/j.1432-1033.1985.tb08851.x. [DOI] [PubMed] [Google Scholar]
  8. Düzgüneş N., Perumal V. K., Kesavalu L., Goldstein J. A., Debs R. J., Gangadharam P. R. Enhanced effect of liposome-encapsulated amikacin on Mycobacterium avium-M. intracellulare complex infection in beige mice. Antimicrob Agents Chemother. 1988 Sep;32(9):1404–1411. doi: 10.1128/aac.32.9.1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ellner J. J., Goldberger M. J., Parenti D. M. Mycobacterium avium infection and AIDS: a therapeutic dilemma in rapid evolution. J Infect Dis. 1991 Jun;163(6):1326–1335. doi: 10.1093/infdis/163.6.1326. [DOI] [PubMed] [Google Scholar]
  10. Ennis M., Lorenz W., Kapp B., Lüben L., Schmal A. Comparison of the histamine-releasing activity of cremophor E1 and some of its derivatives in two experimental models: the in vivo anaesthetized dog and in vitro rat peritoneal mast cells. Agents Actions. 1985 Apr;16(3-4):265–268. doi: 10.1007/BF01983156. [DOI] [PubMed] [Google Scholar]
  11. Gangadharam P. R., Ashtekar D. A., Ghori N., Goldstein J. A., Debs R. J., Düzgünes N. Chemotherapeutic potential of free and liposome encapsulated streptomycin against experimental Mycobacterium avium complex infections in beige mice. J Antimicrob Chemother. 1991 Sep;28(3):425–435. doi: 10.1093/jac/28.3.425. [DOI] [PubMed] [Google Scholar]
  12. Gay J. D., DeYoung D. R., Roberts G. D. In vitro activities of norfloxacin and ciprofloxacin against Mycobacterium tuberculosis, M. avium complex, M. chelonei, M. fortuitum, and M. kansasii. Antimicrob Agents Chemother. 1984 Jul;26(1):94–96. doi: 10.1128/aac.26.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Girard A. E., Girard D., English A. R., Gootz T. D., Cimochowski C. R., Faiella J. A., Haskell S. L., Retsema J. A. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. Antimicrob Agents Chemother. 1987 Dec;31(12):1948–1954. doi: 10.1128/aac.31.12.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldstein D., Lewis C. Advances in drug delivery and targeting. Curr Opin Oncol. 1991 Dec;3(6):1096–1104. doi: 10.1097/00001622-199112000-00019. [DOI] [PubMed] [Google Scholar]
  15. Haran G., Cohen R., Bar L. K., Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta. 1993 Sep 19;1151(2):201–215. doi: 10.1016/0005-2736(93)90105-9. [DOI] [PubMed] [Google Scholar]
  16. Heath T. D., Lopez N. G., Papahadjopoulos D. The effects of liposome size and surface charge on liposome-mediated delivery of methotrexate-gamma-aspartate to cells in vitro. Biochim Biophys Acta. 1985 Oct 24;820(1):74–84. doi: 10.1016/0005-2736(85)90217-2. [DOI] [PubMed] [Google Scholar]
  17. Higgins K. Potential toxicity of ciprofloxacin. Ophthalmology. 1991 Feb;98(2):120–121. [PubMed] [Google Scholar]
  18. Klemens S. P., Cynamon M. H., Swenson C. E., Ginsberg R. S. Liposome-encapsulated-gentamicin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother. 1990 Jun;34(6):967–970. doi: 10.1128/aac.34.6.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kris M. G., O'Connell J. P., Gralla R. J., Wertheim M. S., Parente R. M., Schiff P. B., Young C. W. Phase I trial of taxol given as a 3-hour infusion every 21 days. Cancer Treat Rep. 1986 May;70(5):605–607. [PubMed] [Google Scholar]
  20. Le Conte P., Le Gallou F., Potel G., Struillou L., Baron D., Drugeon H. B. Pharmacokinetics, toxicity, and efficacy of liposomal capreomycin in disseminated Mycobacterium avium beige mouse model. Antimicrob Agents Chemother. 1994 Dec;38(12):2695–2701. doi: 10.1128/aac.38.12.2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee K. D., Nir S., Papahadjopoulos D. Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry. 1993 Jan 26;32(3):889–899. doi: 10.1021/bi00054a021. [DOI] [PubMed] [Google Scholar]
  22. Lorenz W., Reimann H. J., Schmal A., Dormann P., Schwarz B., Neugebauer E., Doenicke A. Histamine release in dogs by Cremophor E1 and its derivatives: oxethylated oleic acid is the most effective constituent. Agents Actions. 1977 Mar;7(1):63–67. doi: 10.1007/BF01964882. [DOI] [PubMed] [Google Scholar]
  23. Madden T. D., Harrigan P. R., Tai L. C., Bally M. B., Mayer L. D., Redelmeier T. E., Loughrey H. C., Tilcock C. P., Reinish L. W., Cullis P. R. The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: a survey. Chem Phys Lipids. 1990 Mar;53(1):37–46. doi: 10.1016/0009-3084(90)90131-a. [DOI] [PubMed] [Google Scholar]
  24. Majumdar S., Flasher D., Friend D. S., Nassos P., Yajko D., Hadley W. K., Düzgüneş N. Efficacies of liposome-encapsulated streptomycin and ciprofloxacin against Mycobacterium avium-M. intracellulare complex infections in human peripheral blood monocyte/macrophages. Antimicrob Agents Chemother. 1992 Dec;36(12):2808–2815. doi: 10.1128/aac.36.12.2808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mayer L. D., Tai L. C., Bally M. B., Mitilenes G. N., Ginsberg R. S., Cullis P. R. Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients. Biochim Biophys Acta. 1990 Jun 27;1025(2):143–151. doi: 10.1016/0005-2736(90)90091-2. [DOI] [PubMed] [Google Scholar]
  26. Mehta R. T., Keyhani A., McQueen T. J., Rosenbaum B., Rolston K. V., Tarrand J. J. In vitro activities of free and liposomal drugs against Mycobacterium avium-M. intracellulare complex and M. tuberculosis. Antimicrob Agents Chemother. 1993 Dec;37(12):2584–2587. doi: 10.1128/aac.37.12.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Olson F., Hunt C. A., Szoka F. C., Vail W. J., Papahadjopoulos D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta. 1979 Oct 19;557(1):9–23. doi: 10.1016/0005-2736(79)90085-3. [DOI] [PubMed] [Google Scholar]
  28. Perez-Soler R., Lopez-Berestein G., Lautersztain J., al-Baker S., Francis K., Macias-Kiger D., Raber M. N., Khokhar A. R. Phase I clinical and pharmacological study of liposome-entrapped cis-bis-neodecanoato-trans-R,R-1,2-diaminocyclohexane platinum(II). Cancer Res. 1990 Jul 15;50(14):4254–4259. [PubMed] [Google Scholar]
  29. Peters D. H., Friedel H. A., McTavish D. Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs. 1992 Nov;44(5):750–799. doi: 10.2165/00003495-199244050-00007. [DOI] [PubMed] [Google Scholar]
  30. Roman I. D., Monte M. J., Esteller A., Jimenez R. Cholestasis in the rat by means of intravenous administration of cyclosporine vehicle, Cremophor EL. Transplantation. 1989 Oct;48(4):554–558. doi: 10.1097/00007890-198910000-00003. [DOI] [PubMed] [Google Scholar]
  31. Sharma A., Straubinger N. L., Straubinger R. M. Modulation of human ovarian tumor cell sensitivity to N-(phosphonacetyl)-L-aspartate (PALA) by liposome drug carriers. Pharm Res. 1993 Oct;10(10):1434–1441. doi: 10.1023/a:1018963006703. [DOI] [PubMed] [Google Scholar]
  32. Straubinger R. M., Hong K., Friend D. S., Papahadjopoulos D. Endocytosis of liposomes and intracellular fate of encapsulated molecules: encounter with a low pH compartment after internalization in coated vesicles. Cell. 1983 Apr;32(4):1069–1079. doi: 10.1016/0092-8674(83)90291-x. [DOI] [PubMed] [Google Scholar]
  33. Taneja D. P., Kaur D. Study on hepatotoxicity and other side-effects of antituberculosis drugs. J Indian Med Assoc. 1990 Oct;88(10):278–280. [PubMed] [Google Scholar]
  34. Truffot-Pernot C., Lecoeur H. F., Maury L., Dautzenberg B., Grosset J. Results of blood cultures for detection of mycobacteria in AIDS patients. Tubercle. 1989 Sep;70(3):187–191. doi: 10.1016/0041-3879(89)90049-4. [DOI] [PubMed] [Google Scholar]
  35. Young L. S., Inderlied C. B., Berlin O. G., Gottlieb M. S. Mycobacterial infections in AIDS patients, with an emphasis on the Mycobacterium avium complex. Rev Infect Dis. 1986 Nov-Dec;8(6):1024–1033. doi: 10.1093/clinids/8.6.1024. [DOI] [PubMed] [Google Scholar]
  36. Young L. S. Mycobacterium avium complex infection. J Infect Dis. 1988 May;157(5):863–867. doi: 10.1093/infdis/157.5.863. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES