Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Sep;39(9):2141–2144. doi: 10.1128/aac.39.9.2141

Macrolide antibiotics inhibit 50S ribosomal subunit assembly in Bacillus subtilis and Staphylococcus aureus.

W S Champney 1, R Burdine 1
PMCID: PMC162898  PMID: 8540733

Abstract

Macrolide antibiotics are clinically important antibiotics which are effective inhibitors of protein biosynthesis in bacterial cells. We have recently shown that some of these compounds also inhibit 50S ribosomal subunit formation in Escherichia coli. Now we show that certain macrolides have the same effect in two gram-positive organisms, Bacillus subtilis and Staphylococcus aureus. Assembly in B. subtilis was prevented by erythromycin, clarithromycin, and azithromycin but not by oleandomycin. 50S subunit formation in S. aureus was prevented by each of seven structurally related 14-membered macrolides but not by lincomycin or two streptogramin antibiotics. Erythromycin treatment did not stimulate the breakdown of performed 50S subunits in either organism. The formation of the 30S ribosomal subunit was also unaffected by these compounds. Assembly was also inhibited in a B. subtilis strain carrying a plasmid with the ermC gene that confers macrolide resistance by rRNA methylation. These results suggest that ribosomes contain an additional site for the inhibitory functions of macrolide antibiotics.

Full Text

The Full Text of this article is available as a PDF (205.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson S., Kurland C. G. Elongating ribosomes in vivo are refractory to erythromycin. Biochimie. 1987 Aug;69(8):901–904. doi: 10.1016/0300-9084(87)90218-5. [DOI] [PubMed] [Google Scholar]
  2. Chinali G., Nyssen E., Di Giambattista M., Cocito C. Action of erythromycin and virginiamycin S on polypeptide synthesis in cell-free systems. Biochim Biophys Acta. 1988 Nov 10;951(1):42–52. doi: 10.1016/0167-4781(88)90023-1. [DOI] [PubMed] [Google Scholar]
  3. Chittum H. S., Champney W. S. Erythromycin inhibits the assembly of the large ribosomal subunit in growing Escherichia coli cells. Curr Microbiol. 1995 May;30(5):273–279. doi: 10.1007/BF00295501. [DOI] [PubMed] [Google Scholar]
  4. Cundliffe E. On the nature of antibiotic binding sites in ribosomes. Biochimie. 1987 Aug;69(8):863–869. doi: 10.1016/0300-9084(87)90213-6. [DOI] [PubMed] [Google Scholar]
  5. Dahlberg A. E., Lund E., Kjeldgaard N. O. Some effects of antibiotics on bacterial polyribosomes as studied by gel electrophoresis. J Mol Biol. 1973 Aug 25;78(4):627–636. doi: 10.1016/0022-2836(73)90284-2. [DOI] [PubMed] [Google Scholar]
  6. Denoya C., Dubnau D. Mono- and dimethylating activities and kinetic studies of the ermC 23 S rRNA methyltransferase. J Biol Chem. 1989 Feb 15;264(5):2615–2624. [PubMed] [Google Scholar]
  7. Dodd J., Kolb J. M., Nomura M. Lack of complete cooperativity of ribosome assembly in vitro and its possible relevance to in vivo ribosome assembly and the regulation of ribosomal gene expression. Biochimie. 1991 Jun;73(6):757–767. doi: 10.1016/0300-9084(91)90055-6. [DOI] [PubMed] [Google Scholar]
  8. Gryczan T. J., Dubnau D. Construction and properties of chimeric plasmids in Bacillus subtilis. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1428–1432. doi: 10.1073/pnas.75.3.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Horinouchi S., Weisblum B. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. J Bacteriol. 1982 May;150(2):804–814. doi: 10.1128/jb.150.2.804-814.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mao J. C., Putterman M. The intermolecular complex of erythromycin and ribosome. J Mol Biol. 1969 Sep 14;44(2):347–361. doi: 10.1016/0022-2836(69)90180-6. [DOI] [PubMed] [Google Scholar]
  11. Menninger J. R., Coleman R. A., Tsai L. N. Erythromycin, lincosamides, peptidyl-tRNA dissociation, and ribosome editing. Mol Gen Genet. 1994 Apr;243(2):225–233. doi: 10.1007/BF00280320. [DOI] [PubMed] [Google Scholar]
  12. Menninger J. R. Functional consequences of binding macrolides to ribosomes. J Antimicrob Chemother. 1985 Jul;16 (Suppl A):23–34. doi: 10.1093/jac/16.suppl_a.23. [DOI] [PubMed] [Google Scholar]
  13. Oleinick N. L., Corcoran J. W. Two types of binding of erythromycin to ribosomes from antibiotic-sensitive and -resistant Bacillus subtilis 168. J Biol Chem. 1969 Feb 25;244(4):727–735. [PubMed] [Google Scholar]
  14. Osawa S., Otaka E., Itoh T., Fukui T. Biosynthesis of 50 s ribosomal subunit in Escherichia coli. J Mol Biol. 1969 Mar 28;40(3):321–351. doi: 10.1016/0022-2836(69)90158-2. [DOI] [PubMed] [Google Scholar]
  15. Pestka S. Binding of [14C]erythromycin to Escherichia coli ribosomes. Antimicrob Agents Chemother. 1974 Oct;6(4):474–478. doi: 10.1128/aac.6.4.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Skinner R., Cundliffe E., Schmidt F. J. Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem. 1983 Oct 25;258(20):12702–12706. [PubMed] [Google Scholar]
  17. Tai P. C., Davis B. D. Action of antibiotics on chain-initiating and on chain-elongating ribosomes. Methods Enzymol. 1979;59:851–862. doi: 10.1016/0076-6879(79)59130-7. [DOI] [PubMed] [Google Scholar]
  18. Vester B., Garrett R. A. A plasmid-coded and site-directed mutation in Escherichia coli 23S RNA that confers resistance to erythromycin: implications for the mechanism of action of erythromycin. Biochimie. 1987 Aug;69(8):891–900. doi: 10.1016/0300-9084(87)90217-3. [DOI] [PubMed] [Google Scholar]
  19. Vogel Z., Vogel T., Zamir A., Elson D. Correlation between the peptidyl transferase activity of the 50 s ribosomal subunit and the ability of the subunit to interact with antibiotics. J Mol Biol. 1971 Sep 14;60(2):339–346. doi: 10.1016/0022-2836(71)90298-1. [DOI] [PubMed] [Google Scholar]
  20. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995 Mar;39(3):577–585. doi: 10.1128/AAC.39.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weisblum B., Graham M. Y., Gryczan T., Dubnau D. Plasmid copy number control: isolation and characterization of high-copy-number mutants of plasmid pE194. J Bacteriol. 1979 Jan;137(1):635–643. doi: 10.1128/jb.137.1.635-643.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES