Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Oct;39(10):2210–2216. doi: 10.1128/aac.39.10.2210

In vivo efficacy of trovafloxacin (CP-99,219), a new quinolone with extended activities against gram-positive pathogens, Streptococcus pneumoniae, and Bacteroides fragilis.

A E Girard 1, D Girard 1, T D Gootz 1, J A Faiella 1, C R Cimochowski 1
PMCID: PMC162916  PMID: 8619569

Abstract

The interesting in vitro antimicrobial activity and pharmacokinetics of the new quinolone trovafloxacin (CP-99,219) warranted further studies to determine its in vivo efficacy in models of infectious disease. The significance of the pharmacokinetic and in vitro antimicrobial profiles of trovafloxacin was shown through efficacy in a series of animal infection models by employing primarily oral therapy. Against acute infections, trovafloxacin was consistently more effective than temafloxacin, ciprofloxacin, and ofloxacin against Streptococcus pneumoniae and other gram-positive pathogens while maintaining activity comparable to that of ciprofloxacin against gram-negative organisms. In a model of murine pneumonia, trovafloxacin was more efficacious than temafloxacin, while ciprofloxacin failed against S. pneumoniae (50% protective doses, 2.1, 29.5, and >100 mg/kg, respectively). In addition to its inherent in vitro potency advantage against S. pneumoniae, these data were supported by a pharmacokinetic study that showed levels of trovafloxacin in pulmonary tissue of S. pneumoniae-infected CF1 mice to be considerably greater than those of temafloxacin and ciprofloxacin (twice the maximum drug concentration in serum; two to three times the half-life, and three to six times the area under the concentration-time curve). Against localized mixed anaerobic infections, trovafloxacin was the only agent to effectively reduce the numbers of recoverable CFU of Bacteroides fragilis ( >1,000-fold), Staphylococcus aureus (1,000-fold), and Escherichia coli ( >100-fold) compared with ciprofloxacin, vancomycin, metronidazole, clindamycin, cefoxitin, and ceftriaxone. The in vitro and in vivo antimicrobial activities of trovafloxacin and its pharmacokinetics in laboratory animals provide support for the ongoing and planned human phase II and III clinical trials.

Full Text

The Full Text of this article is available as a PDF (253.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azoulay-Dupuis E., Bedos J. P., Vallée E., Hardy D. J., Swanson R. N., Pocidalo J. J. Antipneumococcal activity of ciprofloxacin, ofloxacin, and temafloxacin in an experimental mouse pneumonia model at various stages of the disease. J Infect Dis. 1991 Feb;163(2):319–324. doi: 10.1093/infdis/163.2.319. [DOI] [PubMed] [Google Scholar]
  2. Azoulay-Dupuis E., Bedos J. P., Vallée E., Pocidalo J. J. Comparative activity of fluorinated quinolones in acute and subacute Streptococcus pneumoniae pneumonia models: efficacy of temafloxacin. J Antimicrob Chemother. 1991 Dec;28 (Suppl 100):45–53. doi: 10.1093/jac/28.suppl_c.45. [DOI] [PubMed] [Google Scholar]
  3. Azoulay-Dupuis E., Vallée E., Bedos J. P., Muffat-Joly M., Pocidalo J. J. Prophylactic and therapeutic activities of azithromycin in a mouse model of pneumococcal pneumonia. Antimicrob Agents Chemother. 1991 Jun;35(6):1024–1028. doi: 10.1128/aac.35.6.1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brook I. In vivo efficacies of quinolones and clindamycin for treatment of infections with Bacteroides fragilis and/or Escherichia coli in mice: correlation with in vitro susceptibilities. Antimicrob Agents Chemother. 1993 May;37(5):997–1000. doi: 10.1128/aac.37.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooper B., Lawlor M. Pneumococcal bacteremia during ciprofloxacin therapy for pneumococcal pneumonia. Am J Med. 1989 Oct;87(4):475–475. doi: 10.1016/s0002-9343(89)80838-1. [DOI] [PubMed] [Google Scholar]
  6. Dezfulian M., Bitar R. A., Bartlett J. G. Comparative efficacy of ceftriaxone in experimental infections involving Bacteroides fragilis and Escherichia coli. Chemotherapy. 1993 Sep-Oct;39(5):355–360. doi: 10.1159/000239147. [DOI] [PubMed] [Google Scholar]
  7. Eliopoulos G. M., Klimm K., Eliopoulos C. T., Ferraro M. J., Moellering R. C., Jr In vitro activity of CP-99,219, a new fluoroquinolone, against clinical isolates of gram-positive bacteria. Antimicrob Agents Chemother. 1993 Feb;37(2):366–370. doi: 10.1128/aac.37.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. English A. R., Retsema J. A., Lynch J. E. Laboratory evaluation of 3-(5-tetrazolyl) penam, a new semisynthetic beta-lactam antibacterial agent with extended broad-spectrum activity. Antimicrob Agents Chemother. 1976 Jul;10(1):132–138. doi: 10.1128/aac.10.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frieden T. R., Mangi R. J. Inappropriate use of oral ciprofloxacin. JAMA. 1990 Sep 19;264(11):1438–1440. [PubMed] [Google Scholar]
  10. Girard A. E., Girard D., Retsema J. A. Correlation of the extravascular pharmacokinetics of azithromycin with in-vivo efficacy in models of localized infection. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):61–71. doi: 10.1093/jac/25.suppl_a.61. [DOI] [PubMed] [Google Scholar]
  11. Gooding B. B., Jones R. N. In vitro antimicrobial activity of CP-99,219, a novel azabicyclo-naphthyridone. Antimicrob Agents Chemother. 1993 Feb;37(2):349–353. doi: 10.1128/aac.37.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gootz T. D., Brighty K. E., Anderson M. R., Schmieder B. J., Haskell S. L., Sutcliffe J. A., Castaldi M. J., McGuirk P. R. In vitro activity of CP-99,219, a novel 7-(3-azabicyclo[3.1.0]hexyl) naphthyridone antimicrobial. Diagn Microbiol Infect Dis. 1994 Aug;19(4):235–243. doi: 10.1016/0732-8893(94)90037-x. [DOI] [PubMed] [Google Scholar]
  13. Gordon J. J., Kauffman C. A. Superinfection with Streptococcus pneumoniae during therapy with ciprofloxacin. Am J Med. 1990 Sep;89(3):383–384. doi: 10.1016/0002-9343(90)90355-h. [DOI] [PubMed] [Google Scholar]
  14. Granneman G. R., Varga L. L. High-performance liquid chromatographic procedures for the determination of temafloxacin in biological matrices. J Chromatogr. 1991 Jul 17;568(1):197–206. doi: 10.1016/0378-4347(91)80353-e. [DOI] [PubMed] [Google Scholar]
  15. Greenblatt D. J., Kock-Weser J. Drug therapy. Clinical Pharmacokinetics (first of two parts). N Engl J Med. 1975 Oct 2;293(14):702–705. doi: 10.1056/NEJM197510022931406. [DOI] [PubMed] [Google Scholar]
  16. Lee B. L., Padula A. M., Kimbrough R. C., Jones S. R., Chaisson R. E., Mills J., Sande M. A. Infectious complications with respiratory pathogens despite ciprofloxacin therapy. N Engl J Med. 1991 Aug 15;325(7):520–521. doi: 10.1056/nejm199108153250719. [DOI] [PubMed] [Google Scholar]
  17. Neu H. C. Ciprofloxacin: an overview and prospective appraisal. Am J Med. 1987 Apr 27;82(4A):395–404. [PubMed] [Google Scholar]
  18. Pankuch G. A., Jacobs M. R., Appelbaum P. C. Activity of CP99,219 compared with DU-6859a, ciprofloxacin, ofloxacin, levofloxacin, lomefloxacin, tosufloxacin, sparfloxacin and grepafloxacin against penicillin-susceptible and -resistant pneumococci. J Antimicrob Chemother. 1995 Jan;35(1):230–232. doi: 10.1093/jac/35.1.230. [DOI] [PubMed] [Google Scholar]
  19. París M. M., Hickey S. M., Trujillo M., Shelton S., McCracken G. H., Jr Evaluation of CP-99,219, a new fluoroquinolone, for treatment of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother. 1995 Jun;39(6):1243–1246. doi: 10.1128/aac.39.6.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Prabhala R. H., Rao B., Marshall R., Bansal M. B., Thadepalli H. In vitro susceptibility of anaerobic bacteria to ciprofloxacin (Bay o 9867). Antimicrob Agents Chemother. 1984 Nov;26(5):785–786. doi: 10.1128/aac.26.5.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pérez-Trallero E., Garcia-Arenzana J. M., Jimenez J. A., Peris A. Therapeutic failure and selection of resistance to quinolones in a case of pneumococcal pneumonia treated with ciprofloxacin. Eur J Clin Microbiol Infect Dis. 1990 Dec;9(12):905–906. doi: 10.1007/BF01967510. [DOI] [PubMed] [Google Scholar]
  22. Sanders W. E., Jr Efficacy, safety, and potential economic benefits of oral ciprofloxacin in the treatment of infections. Rev Infect Dis. 1988 May-Jun;10(3):528–543. doi: 10.1093/clinids/10.3.528. [DOI] [PubMed] [Google Scholar]
  23. Spangler S. K., Jacobs M. R., Appelbaum P. C. Activity of CP 99,219 compared with those of ciprofloxacin, grepafloxacin, metronidazole, cefoxitin, piperacillin, and piperacillin-tazobactam against 489 anaerobes. Antimicrob Agents Chemother. 1994 Oct;38(10):2471–2476. doi: 10.1128/aac.38.10.2471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wartenberg K., Tonak J., Knapp W. Lung tissue concentrations of cefoperazone. Infection. 1983 Sep-Oct;11(5):280–282. doi: 10.1007/BF01641263. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES