Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Oct;39(10):2295–2303. doi: 10.1128/aac.39.10.2295

In vitro and in vivo activities of the benzoxazinorifamycin KRM-1648 against Mycobacterium tuberculosis.

T Hirata 1, H Saito 1, H Tomioka 1, K Sato 1, J Jidoi 1, K Hosoe 1, T Hidaka 1
PMCID: PMC162932  PMID: 8619585

Abstract

The in vitro and in vivo activities of a new benzoxazinorifamycin, KRM-1648 (KRM), against Mycobacterium tuberculosis were studied. The MIC at which 50% of the isolates are inhibited (MIC50) and the MIC90 of KRM for 30 fresh isolates of M. tuberculosis measured by the BACTEC 460 TB System were 0.016 and 2 micrograms/ml, respectively. These values were much lower than those for rifampin (RMP), which were 4 and >128 micrograms/ml, respectively, and considerably lower than those for rifabutin (RBT), which were 0.125 and 8 micrograms/ml, respectively. A correlational analysis of the MICs of these drugs for the clinical isolates revealed the presence of cross-resistance of the organisms to KRM and either RMP or RBT although the MICs of KRM were distributed over a much lower range than were those of the other two drugs. KRM and RMP at concentrations of 1 to 10 micrograms/ml almost completely inhibited the bacterial growth of RMP-sensitive strains (H37Rv, Kurono, and Fujii) of M. tuberculosis phagocytosed in macrophage-derived J774.1 cells. KRM was more active than RMP in inhibiting the growth of the RMP-resistant (MIC = 8 micrograms/ml) Kurata strain but failed to show such an effect against the RMP-resistant (MIC >128 micrograms/ml) Watanabe stain. When KRM was given to M. tuberculosis-infected mice at dosages of 5 to 20 mg/kg of body weight by gavage, one daily six times per week from day 1 after infection, it was much more efficacious than RMP against infections induced in mice by the RMP-sensitive Kurono strain, as measured by a reduction of rates of mortality, a reduction of the frequency and extent of gross lung lesions, histopathological changes in lung tissues, and a decrease in the bacterial loads in the lungs and spleens of infected mice. KRM also displayed significant therapeutic efficacy against infection induced by the RMP-resistant Kurata strain, while neither KRM nor RMP was efficacious against infection by the RMP-resistant Watanabe strain. In the case of infection with the Kurono strain, the efficacy of the drugs in prolonging the time of survival was in the order KRM, RBT, RMP. KRM was much more efficacious than RMP, when given at 1- to 4-week intervals. These findings suggest that KRM may be useful for the clinical treatment of tuberculosis contracted through RMP-sensitive strains, even when it is administered at long intervals.

Full Text

The Full Text of this article is available as a PDF (574.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes P. F., Bloch A. B., Davidson P. T., Snider D. E., Jr Tuberculosis in patients with human immunodeficiency virus infection. N Engl J Med. 1991 Jun 6;324(23):1644–1650. doi: 10.1056/NEJM199106063242307. [DOI] [PubMed] [Google Scholar]
  2. Beck-Sagué C., Dooley S. W., Hutton M. D., Otten J., Breeden A., Crawford J. T., Pitchenik A. E., Woodley C., Cauthen G., Jarvis W. R. Hospital outbreak of multidrug-resistant Mycobacterium tuberculosis infections. Factors in transmission to staff and HIV-infected patients. JAMA. 1992 Sep 9;268(10):1280–1286. doi: 10.1001/jama.1992.03490100078031. [DOI] [PubMed] [Google Scholar]
  3. Blanchard D. K., Michelini-Norris M. B., Djeu J. Y. A rapid [3H]glycerol radioassay for determination of monocyte-mediated growth inhibition of Mycobacterium avium. J Immunol Methods. 1990 Oct 19;133(2):285–290. doi: 10.1016/0022-1759(90)90370-b. [DOI] [PubMed] [Google Scholar]
  4. Bloch A. B., Rieder H. L., Kelly G. D., Cauthen G. M., Hayden C. H., Snider D. E. The epidemiology of tuberculosis in the United States. Semin Respir Infect. 1989 Sep;4(3):157–170. [PubMed] [Google Scholar]
  5. Cohn D. L., Iseman M. D. Treatment and prevention of multidrug-resistant tuberculosis. Res Microbiol. 1993 Feb;144(2):150–153. doi: 10.1016/0923-2508(93)90030-6. [DOI] [PubMed] [Google Scholar]
  6. Dooley S. W., Jarvis W. R., Martone W. J., Snider D. E., Jr Multidrug-resistant tuberculosis. Ann Intern Med. 1992 Aug 1;117(3):257–259. doi: 10.7326/0003-4819-117-3-257. [DOI] [PubMed] [Google Scholar]
  7. Edlin B. R., Tokars J. I., Grieco M. H., Crawford J. T., Williams J., Sordillo E. M., Ong K. R., Kilburn J. O., Dooley S. W., Castro K. G. An outbreak of multidrug-resistant tuberculosis among hospitalized patients with the acquired immunodeficiency syndrome. N Engl J Med. 1992 Jun 4;326(23):1514–1521. doi: 10.1056/NEJM199206043262302. [DOI] [PubMed] [Google Scholar]
  8. Emori M., Saito H., Sato K., Tomioka H., Setogawa T., Hidaka T. Therapeutic efficacy of the benzoxazinorifamycin KRM-1648 against experimental Mycobacterium avium infection induced in rabbits. Antimicrob Agents Chemother. 1993 Apr;37(4):722–728. doi: 10.1128/aac.37.4.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fischl M. A., Uttamchandani R. B., Daikos G. L., Poblete R. B., Moreno J. N., Reyes R. R., Boota A. M., Thompson L. M., Cleary T. J., Lai S. An outbreak of tuberculosis caused by multiple-drug-resistant tubercle bacilli among patients with HIV infection. Ann Intern Med. 1992 Aug 1;117(3):177–183. doi: 10.7326/0003-4819-117-3-177. [DOI] [PubMed] [Google Scholar]
  10. Frieden T. R., Sterling T., Pablos-Mendez A., Kilburn J. O., Cauthen G. M., Dooley S. W. The emergence of drug-resistant tuberculosis in New York City. N Engl J Med. 1993 Feb 25;328(8):521–526. doi: 10.1056/NEJM199302253280801. [DOI] [PubMed] [Google Scholar]
  11. Fujii K., Saito H., Tomioka H., Mae T., Hosoe K. Mechanism of action of antimycobacterial activity of the new benzoxazinorifamycin KRM-1648. Antimicrob Agents Chemother. 1995 Jul;39(7):1489–1492. doi: 10.1128/aac.39.7.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klemens S. P., Grossi M. A., Cynamon M. H. Activity of KRM-1648, a new benzoxazinorifamycin, against Mycobacterium tuberculosis in a murine model. Antimicrob Agents Chemother. 1994 Oct;38(10):2245–2248. doi: 10.1128/aac.38.10.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kochi A., Vareldzis B., Styblo K. Multidrug-resistant tuberculosis and its control. Res Microbiol. 1993 Feb;144(2):104–110. doi: 10.1016/0923-2508(93)90023-u. [DOI] [PubMed] [Google Scholar]
  14. Kuze F., Yamamoto T., Amitani R., Suzuki K. [In vivo activities of new rifamycin derivatives against mycobacteria]. Kekkaku. 1991 Jan;66(1):7–12. [PubMed] [Google Scholar]
  15. Lee C. N., Heifets L. B. Determination of minimal inhibitory concentrations of antituberculosis drugs by radiometric and conventional methods. Am Rev Respir Dis. 1987 Aug;136(2):349–352. doi: 10.1164/ajrccm/136.2.349. [DOI] [PubMed] [Google Scholar]
  16. McGowan J. E., Jr Multiple-drug-resistant tuberculosis: clinical and laboratory issues. Res Microbiol. 1993 Feb;144(2):122–129. doi: 10.1016/0923-2508(93)90026-x. [DOI] [PubMed] [Google Scholar]
  17. Riley L. W. Drug-resistant tuberculosis. Clin Infect Dis. 1993 Nov;17 (Suppl 2):S442–S446. doi: 10.1093/clinids/17.supplement_2.s442. [DOI] [PubMed] [Google Scholar]
  18. Saito H., Tomioka H., Sato K., Emori M., Yamane T., Yamashita K., Hosoe K., Hidaka T. In vitro antimycobacterial activities of newly synthesized benzoxazinorifamycins. Antimicrob Agents Chemother. 1991 Mar;35(3):542–547. doi: 10.1128/aac.35.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saito H., Tomioka H., Sato K., Kawahara S., Hidaka T., Dekio S. Therapeutic effect of KRM-1648 with various antimicrobials against Mycobacterium avium complex infection in mice. Tuber Lung Dis. 1995 Feb;76(1):51–58. doi: 10.1016/0962-8479(95)90580-4. [DOI] [PubMed] [Google Scholar]
  20. Styblo K. The impact of HIV infection on the global epidemiology of tuberculosis. Bull Int Union Tuberc Lung Dis. 1991 Mar;66(1):27–32. [PubMed] [Google Scholar]
  21. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
  22. Tomioka H., Saito H., Fujii K., Sato K., Hidaka T. In vitro antimicrobial activity of benzoxazinorifamycin, KRM-1648, against Mycobacterium avium complex, determined by the radiometric method. Antimicrob Agents Chemother. 1993 Jan;37(1):67–70. doi: 10.1128/aac.37.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tomioka H., Saito H. In vivo antileprosy activity of the newly synthesized benzoxazinorifamycin, KRM-1648. Int J Lepr Other Mycobact Dis. 1993 Jun;61(2):255–258. [PubMed] [Google Scholar]
  24. Yamamoto T., Amitani R., Kuze F., Suzuki K. [In vitro activities of new rifamycin derivatives against Mycobacterium tuberculosis and M. avium complex]. Kekkaku. 1990 Dec;65(12):805–810. [PubMed] [Google Scholar]
  25. Yamamoto Y., Saito H., Tomioka H., Sato K., Yamane T., Yamashita K., Hosoe K., Hidaka T. In vitro and in vivo activities of KRM-1648, a newly synthesized benzoxazinorifamycin, against Mycobacterium marinum. Zentralbl Bakteriol. 1992 Jul;277(2):204–209. doi: 10.1016/s0934-8840(11)80614-6. [DOI] [PubMed] [Google Scholar]
  26. Yamane T., Hashizume T., Yamashita K., Konishi E., Hosoe K., Hidaka T., Watanabe K., Kawaharada H., Yamamoto T., Kuze F. Synthesis and biological activity of 3'-hydroxy-5'-aminobenzoxazinorifamycin derivatives. Chem Pharm Bull (Tokyo) 1993 Jan;41(1):148–155. doi: 10.1248/cpb.41.148. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES