Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Oct;39(10):2304–2308. doi: 10.1128/aac.39.10.2304

Metabolic pathways for activation of the antiviral agent 9-(2-phosphonylmethoxyethyl)adenine in human lymphoid cells.

B L Robbins 1, J Greenhaw 1, M C Connelly 1, A Fridland 1
PMCID: PMC162933  PMID: 8619586

Abstract

9-(2-Phosphonylmethoxyethyl)adenine (PMEA), the acyclic phosphonate analog of adenine monophosphate, is a promising antiviral drug with activity against herpesviruses, Epstein-Barr virus, and retroviruses, including the human immunodeficiency virus. In order to be active, it must be converted to the diphosphate derivative, the putative inhibitor of viral DNA polymerases. The metabolic pathway responsible for activation of PMEA is unclear. The metabolism of PMEA was investigated in human T-lymphoid cells (CEMss) and a PMEA-resistant subline (CEMss(r-1)) with a partial deficiency in adenylate kinase activity. Experiments with [3H]PMEA showed that extracts of CEMss phosphorylated PMEA to its mono- and diphosphate in the presence of ATP as the phosphate donor. No other nucleotides or 5-phosphoribosyl pyrophosphate displayed appreciable activity as a phosphate donor. Subcellular fractionation experiments showed that CEMss cells contained two nucleotide kinase activities, one in mitochondria and one in the cytosol, which phosphorylated PMEA. The PMEA-resistant CEMss mutant proved to have a deficiency in the mitochondrial adenylate kinase activity, indicating that this enzyme was important in the phosphorylation of PMEA. Other effective antiviral purine phosphonate derivatives of PMEA showed a profile of phosphorylating activity similar to that of PMEA. By comparison, phosphorylation of the pyrimidine analog (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl) cytosine proceeded by an enzyme present in the cytosol. We conclude from these studies that adenylate kinase which has been localized in the intermembrane space of mitochondria is the major route for PMEA phosphorylation in CEMss cells but that another hitherto unidentified enzyme(s) present in the cytosol may contribute to the anabolism of the phosphonates.

Full Text

The Full Text of this article is available as a PDF (183.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balzarini J., De Clercq E. 5-Phosphoribosyl 1-pyrophosphate synthetase converts the acyclic nucleoside phosphonates 9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and 9-(2-phosphonylmethoxyethyl)adenine directly to their antivirally active diphosphate derivatives. J Biol Chem. 1991 May 15;266(14):8686–8689. [PubMed] [Google Scholar]
  2. Balzarini J., Hao Z., Herdewijn P., Johns D. G., De Clercq E. Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonylmethoxyethyl)adenine, a potent anti-human immunodeficiency virus compound. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1499–1503. doi: 10.1073/pnas.88.4.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balzarini J., Naesens L., De Clercq E. Anti-retrovirus activity of 9-(2-phosphonylmethoxyethyl)adenine (PMEA) in vivo increases when it is less frequently administered. Int J Cancer. 1990 Aug 15;46(2):337–340. doi: 10.1002/ijc.2910460233. [DOI] [PubMed] [Google Scholar]
  4. Balzarini J., Naesens L., Herdewijn P., Rosenberg I., Holy A., Pauwels R., Baba M., Johns D. G., De Clercq E. Marked in vivo antiretrovirus activity of 9-(2-phosphonylmethoxyethyl)adenine, a selective anti-human immunodeficiency virus agent. Proc Natl Acad Sci U S A. 1989 Jan;86(1):332–336. doi: 10.1073/pnas.86.1.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Balzarini J., Naesens L., Slachmuylders J., Niphuis H., Rosenberg I., Holý A., Schellekens H., De Clercq E. 9-(2-Phosphonylmethoxyethyl)adenine (PMEA) effectively inhibits retrovirus replication in vitro and simian immunodeficiency virus infection in rhesus monkeys. AIDS. 1991 Jan;5(1):21–28. doi: 10.1097/00002030-199101000-00003. [DOI] [PubMed] [Google Scholar]
  6. Cerny J., Foster S. A., Cheng Y. C. Cell-protecting effect against herpes simplex virus-1 and cellular metabolism of 9-(2-phosphonylmethoxyethyl)adenine in HeLa S3 cells. Mol Pharmacol. 1992 Sep;42(3):537–544. [PubMed] [Google Scholar]
  7. De Clercq E. Broad-spectrum anti-DNA virus and anti-retrovirus activity of phosphonylmethoxyalkylpurines and -pyrimidines. Biochem Pharmacol. 1991 Aug 8;42(5):963–972. doi: 10.1016/0006-2952(91)90276-b. [DOI] [PubMed] [Google Scholar]
  8. De Clercq E., Holý A., Rosenberg I. Efficacy of phosphonylmethoxyalkyl derivatives of adenine in experimental herpes simplex virus and vaccinia virus infections in vivo. Antimicrob Agents Chemother. 1989 Feb;33(2):185–191. doi: 10.1128/aac.33.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Clercq E., Holý A., Rosenberg I., Sakuma T., Balzarini J., Maudgal P. C. A novel selective broad-spectrum anti-DNA virus agent. Nature. 1986 Oct 2;323(6087):464–467. doi: 10.1038/323464a0. [DOI] [PubMed] [Google Scholar]
  10. Egberink H., Borst M., Niphuis H., Balzarini J., Neu H., Schellekens H., De Clercq E., Horzinek M., Koolen M. Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3087–3091. doi: 10.1073/pnas.87.8.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frank R., Trosin M., Tomasselli A. G., Schulz G. E., Schirmer R. H. Mitochondrial adenylate kinase (AK2) from bovine heart. Homology with the cytosolic isoenzyme in the catalytic region. Eur J Biochem. 1984 Jun 15;141(3):629–636. doi: 10.1111/j.1432-1033.1984.tb08238.x. [DOI] [PubMed] [Google Scholar]
  12. Hande K. R., Chabner B. A. Pyrimidine nucleoside monophosphate kinase from human leukemic blast cells. Cancer Res. 1978 Mar;38(3):579–585. [PubMed] [Google Scholar]
  13. Kress L. F., Bono V. H., Jr, Noda L. The sulfhydryl groups of rabbit muscle adenosine triphosphate-adenosine monophosphate phosphotransferase. Activity of enzyme treated with mercurials. J Biol Chem. 1966 May 25;241(10):2293–2300. [PubMed] [Google Scholar]
  14. Lin J. C., DeClercq E., Pagano J. S. Novel acyclic adenosine analogs inhibit Epstein-Barr virus replication. Antimicrob Agents Chemother. 1987 Sep;31(9):1431–1433. doi: 10.1128/aac.31.9.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Naesens L., Balzarini J., Rosenberg I., Holý A., De Clercq E. 9-(2-Phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP): a novel agent with anti-human immunodeficiency virus activity in vitro and potent anti-Moloney murine sarcoma virus activity in vivo. Eur J Clin Microbiol Infect Dis. 1989 Dec;8(12):1043–1047. doi: 10.1007/BF01975167. [DOI] [PubMed] [Google Scholar]
  16. Navé J. F., Eschbach A., Wolff-Kugel D., Halazy S., Balzarini J. Enzymatic phosphorylation and pyrophosphorylation of 2',3'-dideoxyadenosine-5'-monophosphate, a key metabolite in the pathway for activation of the anti-HIV (human immunodeficiency virus) agent 2',3'-dideoxyinosine. Biochem Pharmacol. 1994 Sep 15;48(6):1105–1112. doi: 10.1016/0006-2952(94)90146-5. [DOI] [PubMed] [Google Scholar]
  17. Pauwels R., Balzarini J., Schols D., Baba M., Desmyter J., Rosenberg I., Holy A., De Clercq E. Phosphonylmethoxyethyl purine derivatives, a new class of anti-human immunodeficiency virus agents. Antimicrob Agents Chemother. 1988 Jul;32(7):1025–1030. doi: 10.1128/aac.32.7.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Richter C. Hydroperoxide effects on redox state of pyridine nucleotides and Ca2+ retention by mitochondria. Methods Enzymol. 1984;105:435–441. doi: 10.1016/s0076-6879(84)05061-8. [DOI] [PubMed] [Google Scholar]
  19. Robbins B. L., Connelly M. C., Marshall D. R., Srinivas R. V., Fridland A. A human T lymphoid cell variant resistant to the acyclic nucleoside phosphonate 9-(2-phosphonylmethoxyethyl)adenine shows a unique combination of a phosphorylation defect and increased efflux of the agent. Mol Pharmacol. 1995 Feb;47(2):391–397. [PubMed] [Google Scholar]
  20. Schirmer R. H., Thuma E. Sensitivity of adenylate kinase isozymes from normal and dystrophic human muscle to sulfhydryl reagents. Biochim Biophys Acta. 1972 Apr 7;268(1):92–97. doi: 10.1016/0005-2744(72)90201-x. [DOI] [PubMed] [Google Scholar]
  21. Storrie B., Madden E. A. Isolation of subcellular organelles. Methods Enzymol. 1990;182:203–225. doi: 10.1016/0076-6879(90)82018-w. [DOI] [PubMed] [Google Scholar]
  22. Tanabe T., Yamada M., Noma T., Kajii T., Nakazawa A. Tissue-specific and developmentally regulated expression of the genes encoding adenylate kinase isozymes. J Biochem. 1993 Feb;113(2):200–207. doi: 10.1093/oxfordjournals.jbchem.a124026. [DOI] [PubMed] [Google Scholar]
  23. Tomasselli A. G., Noda L. H. Mitochondrial ATP:AMP phosphotransferase from beef heart: purification and properties. Eur J Biochem. 1980 Feb;103(3):481–491. doi: 10.1111/j.1432-1033.1980.tb05972.x. [DOI] [PubMed] [Google Scholar]
  24. Tomasselli A. G., Schirmer R. H., Noda L. H. Mitochondrial GTP-AMP phosphotransferase. 1. Purification and properties. Eur J Biochem. 1979 Jan 15;93(2):257–262. doi: 10.1111/j.1432-1033.1979.tb12818.x. [DOI] [PubMed] [Google Scholar]
  25. Tsai C. C., Follis K. E., Sabo A., Grant R. F., Bartz C., Nolte R. E., Benveniste R. E., Bischofberger N. Preexposure prophylaxis with 9-(2-phosphonylmethoxyethyl)adenine against simian immunodeficiency virus infection in macaques. J Infect Dis. 1994 Feb;169(2):260–266. doi: 10.1093/infdis/169.2.260. [DOI] [PubMed] [Google Scholar]
  26. Verhoef V., Sarup J., Fridland A. Identification of the mechanism of activation of 9-beta-D-arabinofuranosyladenine in human lymphoid cells using mutants deficient in nucleoside kinases. Cancer Res. 1981 Nov;41(11 Pt 1):4478–4483. [PubMed] [Google Scholar]
  27. Watanabe K., Itakura T., Kubo S. Distribution of adenylate kinase isozymes in porcine tissues and their subcellular localization. J Biochem. 1979 Mar;85(3):799–805. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES