Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Nov;39(11):2378–2386. doi: 10.1128/aac.39.11.2378

Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters.

D Sanglard 1, K Kuchler 1, F Ischer 1, J L Pagani 1, M Monod 1, J Bille 1
PMCID: PMC162951  PMID: 8585712

Abstract

Azole antifungal agents, and especially fluconazole, have been used widely to treat oropharyngeal candidiasis in patients with AIDS. An increasing number of cases of clinical resistance against fluconazole, often correlating with in vitro resistance, have been reported. To investigate the mechanisms of resistance toward azole antifungal agents at the molecular level in clinical C. albicans isolates, we focused on resistance mechanisms related to the cellular target of azoles, i.e., cytochrome P450(14DM) (14DM) and those regulating the transport or accumulation of fluconazole. The analysis of sequential isogenic C. albicans isolates with increasing levels of resistance to fluconazole from five AIDS patients showed that overexpression of the gene encoding 14DM either by gene amplification or by gene deregulation was not the major cause of resistance among these clinical isolates. We found, however, that fluconazole-resistant C. albicans isolates failed to accumulate 3H-labelled fluconazole. This phenomenon was reversed in resistant cells by inhibiting the cellular energy supply with azide, suggesting that resistance could be mediated by energy-requiring efflux pumps such as those described as ATP-binding cassette (ABC) multidrug transporters. In fact, some but not all fluconazole-resistant clinical C. albicans isolates exhibited up to a 10-fold relative increase in mRNA levels for a recently cloned ABC transporter gene called CDR1. In an azole-resistant C. albicans isolate not overexpressing CDR1, the gene for another efflux pump named BENr was massively overexpressed. This gene was cloned from C. albicans for conferring benomyl resistance in Saccharomyces cerevisiae. Therefore, at least the overexpression or the deregulation of these two genes potentially mediates resistance to azoles in C. albicans clinical isolates from AIDS patients with oropharyngeal candidiasis. Involvement of ABC transporters in azole resistance was further evidenced with S. cerevisiae mutants lacking specific multidrug transporters which were rendered hypersusceptible to azole derivatives including fluconazole, itraconazole, and ketoconazole.

Full Text

The Full Text of this article is available as a PDF (704.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ammerer G. Expression of genes in yeast using the ADCI promoter. Methods Enzymol. 1983;101:192–201. doi: 10.1016/0076-6879(83)01014-9. [DOI] [PubMed] [Google Scholar]
  2. Balzi E., Goffeau A. Genetics and biochemistry of yeast multidrug resistance. Biochim Biophys Acta. 1994 Aug 30;1187(2):152–162. doi: 10.1016/0005-2728(94)90102-3. [DOI] [PubMed] [Google Scholar]
  3. Balzi E., Wang M., Leterme S., Van Dyck L., Goffeau A. PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1. J Biol Chem. 1994 Jan 21;269(3):2206–2214. [PubMed] [Google Scholar]
  4. Barchiesi F., Hollis R. J., McGough D. A., Scalise G., Rinaldi M. G., Pfaller M. A. DNA subtypes and fluconazole susceptibilities of Candida albicans isolates from the oral cavities of patients with AIDS. Clin Infect Dis. 1995 Mar;20(3):634–640. doi: 10.1093/clinids/20.3.634. [DOI] [PubMed] [Google Scholar]
  5. Ben-Yaacov R., Knoller S., Caldwell G. A., Becker J. M., Koltin Y. Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrob Agents Chemother. 1994 Apr;38(4):648–652. doi: 10.1128/aac.38.4.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bissinger P. H., Kuchler K. Molecular cloning and expression of the Saccharomyces cerevisiae STS1 gene product. A yeast ABC transporter conferring mycotoxin resistance. J Biol Chem. 1994 Feb 11;269(6):4180–4186. [PubMed] [Google Scholar]
  7. Burgener-Kairuz P., Zuber J. P., Jaunin P., Buchman T. G., Bille J., Rossier M. Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-alpha-demethylase (L1A1) gene fragment. J Clin Microbiol. 1994 Aug;32(8):1902–1907. doi: 10.1128/jcm.32.8.1902-1907.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  9. Fling M. E., Kopf J., Tamarkin A., Gorman J. A., Smith H. A., Koltin Y. Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet. 1991 Jun;227(2):318–329. doi: 10.1007/BF00259685. [DOI] [PubMed] [Google Scholar]
  10. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gietz R. D., Schiestl R. H. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast. 1991 Apr;7(3):253–263. doi: 10.1002/yea.320070307. [DOI] [PubMed] [Google Scholar]
  12. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  13. Hirata D., Yano K., Miyahara K., Miyakawa T. Saccharomyces cerevisiae YDR1, which encodes a member of the ATP-binding cassette (ABC) superfamily, is required for multidrug resistance. Curr Genet. 1994 Oct;26(4):285–294. doi: 10.1007/BF00310491. [DOI] [PubMed] [Google Scholar]
  14. Hitchcock C. A., Barrett-Bee K. J., Russell N. J. The lipid composition and permeability to azole of an azole- and polyene-resistant mutant of Candida albicans. J Med Vet Mycol. 1987 Feb;25(1):29–37. doi: 10.1080/02681218780000041. [DOI] [PubMed] [Google Scholar]
  15. Hitchcock C. A., Barrett-Bee K. J., Russell N. J. The lipid composition and permeability to the triazole antifungal antibiotic ICI 153066 of serum-grown mycelial cultures of Candida albicans. J Gen Microbiol. 1989 Jul;135(7):1949–1955. doi: 10.1099/00221287-135-7-1949. [DOI] [PubMed] [Google Scholar]
  16. Hitchcock C. A., Barrett-Bee K. J., Russell N. J. The lipid composition of azole-sensitive and azole-resistant strains of Candida albicans. J Gen Microbiol. 1986 Sep;132(9):2421–2431. doi: 10.1099/00221287-132-9-2421. [DOI] [PubMed] [Google Scholar]
  17. Hitchcock C. A., Pye G. W., Troke P. F., Johnson E. M., Warnock D. W. Fluconazole resistance in Candida glabrata. Antimicrob Agents Chemother. 1993 Sep;37(9):1962–1965. doi: 10.1128/aac.37.9.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hitchcock C. A., Russell N. J., Barrett-Bee K. J. Sterols in Candida albicans mutants resistant to polyene or azole antifungals, and of a double mutant C. albicans 6.4. Crit Rev Microbiol. 1987;15(1):111–115. doi: 10.3109/10408418709104454. [DOI] [PubMed] [Google Scholar]
  19. Howell S. A., Mallet A. I., Noble W. C. A comparison of the sterol content of multiple isolates of the Candida albicans Darlington strain with other clinically azole-sensitive and -resistant strains. J Appl Bacteriol. 1990 Nov;69(5):692–696. doi: 10.1111/j.1365-2672.1990.tb01564.x. [DOI] [PubMed] [Google Scholar]
  20. Hube B., Monod M., Schofield D. A., Brown A. J., Gow N. A. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol. 1994 Oct;14(1):87–99. doi: 10.1111/j.1365-2958.1994.tb01269.x. [DOI] [PubMed] [Google Scholar]
  21. Kurtz M. B., Cortelyou M. W., Miller S. M., Lai M., Kirsch D. R. Development of autonomously replicating plasmids for Candida albicans. Mol Cell Biol. 1987 Jan;7(1):209–217. doi: 10.1128/mcb.7.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Millon L., Manteaux A., Reboux G., Drobacheff C., Monod M., Barale T., Michel-Briand Y. Fluconazole-resistant recurrent oral candidiasis in human immunodeficiency virus-positive patients: persistence of Candida albicans strains with the same genotype. J Clin Microbiol. 1994 Apr;32(4):1115–1118. doi: 10.1128/jcm.32.4.1115-1118.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mueller D. M., Indyk V., McGill L. ATPase kinetics for wild-type Saccharomyces cerevisiae F1-ATPase and F1-ATPase with the beta-subunit Thr197-->Ser mutation. Eur J Biochem. 1994 Jun 15;222(3):991–999. doi: 10.1111/j.1432-1033.1994.tb18950.x. [DOI] [PubMed] [Google Scholar]
  24. Musial C. E., Cockerill F. R., 3rd, Roberts G. D. Fungal infections of the immunocompromised host: clinical and laboratory aspects. Clin Microbiol Rev. 1988 Oct;1(4):349–364. doi: 10.1128/cmr.1.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994 Apr 15;264(5157):382–388. doi: 10.1126/science.8153625. [DOI] [PubMed] [Google Scholar]
  26. Odds F. C. Resistance of yeasts to azole-derivative antifungals. J Antimicrob Chemother. 1993 Apr;31(4):463–471. doi: 10.1093/jac/31.4.463. [DOI] [PubMed] [Google Scholar]
  27. Pfaller M. A., Barry A. L. Evaluation of a novel colorimetric broth microdilution method for antifungal susceptibility testing of yeast isolates. J Clin Microbiol. 1994 Aug;32(8):1992–1996. doi: 10.1128/jcm.32.8.1992-1996.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Powderly W. G. Resistant candidiasis. AIDS Res Hum Retroviruses. 1994 Aug;10(8):925–929. doi: 10.1089/aid.1994.10.925. [DOI] [PubMed] [Google Scholar]
  29. Prasad R., De Wergifosse P., Goffeau A., Balzi E. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet. 1995 Mar;27(4):320–329. doi: 10.1007/BF00352101. [DOI] [PubMed] [Google Scholar]
  30. Redding S., Smith J., Farinacci G., Rinaldi M., Fothergill A., Rhine-Chalberg J., Pfaller M. Resistance of Candida albicans to fluconazole during treatment of oropharyngeal candidiasis in a patient with AIDS: documentation by in vitro susceptibility testing and DNA subtype analysis. Clin Infect Dis. 1994 Feb;18(2):240–242. doi: 10.1093/clinids/18.2.240. [DOI] [PubMed] [Google Scholar]
  31. Rex J. H., Rinaldi M. G., Pfaller M. A. Resistance of Candida species to fluconazole. Antimicrob Agents Chemother. 1995 Jan;39(1):1–8. doi: 10.1128/aac.39.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ruhnke M., Eigler A., Engelmann E., Geiseler B., Trautmann M. Correlation between antifungal susceptibility testing of Candida isolates from patients with HIV infection and clinical results after treatment with fluconazole. Infection. 1994 Mar-Apr;22(2):132–136. doi: 10.1007/BF01739024. [DOI] [PubMed] [Google Scholar]
  33. Ruhnke M., Eigler A., Tennagen I., Geiseler B., Engelmann E., Trautmann M. Emergence of fluconazole-resistant strains of Candida albicans in patients with recurrent oropharyngeal candidosis and human immunodeficiency virus infection. J Clin Microbiol. 1994 Sep;32(9):2092–2098. doi: 10.1128/jcm.32.9.2092-2098.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ryley J. F., Wilson R. G., Barrett-Bee K. J. Azole resistance in Candida albicans. Sabouraudia. 1984;22(1):53–63. [PubMed] [Google Scholar]
  35. Saag M. S., Dismukes W. E. Azole antifungal agents: emphasis on new triazoles. Antimicrob Agents Chemother. 1988 Jan;32(1):1–8. doi: 10.1128/aac.32.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sadhu C., McEachern M. J., Rustchenko-Bulgac E. P., Schmid J., Soll D. R., Hicks J. B. Telomeric and dispersed repeat sequences in Candida yeasts and their use in strain identification. J Bacteriol. 1991 Jan;173(2):842–850. doi: 10.1128/jb.173.2.842-850.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sanglard D., Fiechter A. DNA transformations of Candida tropicalis with replicating and integrative vectors. Yeast. 1992 Dec;8(12):1065–1075. doi: 10.1002/yea.320081209. [DOI] [PubMed] [Google Scholar]
  38. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol. 1986 May;51(5):873–884. doi: 10.1128/aem.51.5.873-884.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Servos J., Haase E., Brendel M. Gene SNQ2 of Saccharomyces cerevisiae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases. Mol Gen Genet. 1993 Jan;236(2-3):214–218. doi: 10.1007/BF00277115. [DOI] [PubMed] [Google Scholar]
  40. Troillet N., Durussel C., Bille J., Glauser M. P., Chave J. P. Correlation between in vitro susceptibility of Candida albicans and fluconazole-resistant oropharyngeal candidiasis in HIV-infected patients. Eur J Clin Microbiol Infect Dis. 1993 Dec;12(12):911–915. doi: 10.1007/BF01992164. [DOI] [PubMed] [Google Scholar]
  41. Truan G., Epinat J. C., Rougeulle C., Cullin C., Pompon D. Cloning and characterization of a yeast cytochrome b5-encoding gene which suppresses ketoconazole hypersensitivity in a NADPH-P-450 reductase-deficient strain. Gene. 1994 May 3;142(1):123–127. doi: 10.1016/0378-1119(94)90366-2. [DOI] [PubMed] [Google Scholar]
  42. Vanden Bossche H., Marichal P., Gorrens J., Bellens D., Moereels H., Janssen P. A. Mutation in cytochrome P-450-dependent 14 alpha-demethylase results in decreased affinity for azole antifungals. Biochem Soc Trans. 1990 Feb;18(1):56–59. doi: 10.1042/bst0180056. [DOI] [PubMed] [Google Scholar]
  43. Vanden Bossche H., Marichal P., Odds F. C. Molecular mechanisms of drug resistance in fungi. Trends Microbiol. 1994 Oct;2(10):393–400. doi: 10.1016/0966-842x(94)90618-1. [DOI] [PubMed] [Google Scholar]
  44. Watson P. F., Rose M. E., Kelly S. L. Isolation and analysis of ketoconazole resistant mutants of Saccharomyces cerevisiae. J Med Vet Mycol. 1988 Jun;26(3):153–162. doi: 10.1080/02681218880000231. [DOI] [PubMed] [Google Scholar]
  45. vanden Bossche H., Marichal P., Odds F. C., Le Jeune L., Coene M. C. Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother. 1992 Dec;36(12):2602–2610. doi: 10.1128/aac.36.12.2602. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES