Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Nov;39(11):2397–2400. doi: 10.1128/aac.39.11.2397

Antibiotics and prevention of microbial colonization of catheters.

I Raad 1, R Darouiche 1, R Hachem 1, M Sacilowski 1, G P Bodey 1
PMCID: PMC162954  PMID: 8585715

Abstract

Slime-producing staphylococci frequently colonize catheters, and when they are embedded in biofilm, they become resistant to various antibiotics. In the study that is described, the comparative efficacies of vancomycin, clindamycin, novobiocin, and minocycline, alone or in combination with rifampin, were tested in an in vitro model of colonization. The model consisted of the modified Robbins device with antibiotic-impregnated cement filling the lumen of catheter segments. The synergistic combination of minocycline and rifampin was the most efficacious in preventing bacterial colonization of slime-producing strains of Staphylococcus epidermidis and Staphylococcus aureus to catheter surfaces. A similar trend was observed when the inhibitory activities of polyurethane catheters coated with minocycline and rifampin were compared with the inhibitory activities of catheters coated with other antimicrobial agents. The inhibitory activities of catheters coated with minocycline and rifampin against S. epidermidis, S. aureus, and Enterococcus faecalis strains, for example, were significantly better than those of catheters coated with vancomycin (P < 0.05). The inhibitory activities of catheters coated with minocycline and rifampin against gram-negative bacilli and Candida albicans were comparable to those of catheters coated with ceftazidime and amphotericin B, respectively. We found that the combination of minocycline and rifampin is unique and highly effective in preventing the colonization of catheters with slime-producing staphylococci and that it also displays a broad-spectrum inhibitory activity against gram-negative bacteria and yeast cells.

Full Text

The Full Text of this article is available as a PDF (368.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Christensen G. D., Simpson W. A., Bisno A. L., Beachey E. H. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun. 1982 Jul;37(1):318–326. doi: 10.1128/iai.37.1.318-326.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Christensen G. D., Simpson W. A., Younger J. J., Baddour L. M., Barrett F. F., Melton D. M., Beachey E. H. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985 Dec;22(6):996–1006. doi: 10.1128/jcm.22.6.996-1006.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clumeck N., Marcelis L., Amiri-Lamraski M. H., Gordts B. Treatment of severe staphylococcal infections with a rifampicin-minocycline association. J Antimicrob Chemother. 1984 Jun;13 (Suppl 100):17–22. doi: 10.1093/jac/13.suppl_c.17. [DOI] [PubMed] [Google Scholar]
  4. Darouiche R. O., Dhir A., Miller A. J., Landon G. C., Raad I. I., Musher D. M. Vancomycin penetration into biofilm covering infected prostheses and effect on bacteria. J Infect Dis. 1994 Sep;170(3):720–723. doi: 10.1093/infdis/170.3.720. [DOI] [PubMed] [Google Scholar]
  5. Darouiche R., Wright C., Hamill R., Koza M., Lewis D., Markowski J. Eradication of colonization by methicillin-resistant Staphylococcus aureus by using oral minocycline-rifampin and topical mupirocin. Antimicrob Agents Chemother. 1991 Aug;35(8):1612–1615. doi: 10.1128/aac.35.8.1612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eppes S. C., Troutman J. L., Gutman L. T. Outcome of treatment of candidemia in children whose central catheters were removed or retained. Pediatr Infect Dis J. 1989 Feb;8(2):99–104. [PubMed] [Google Scholar]
  7. Evans R. C., Holmes C. J. Effect of vancomycin hydrochloride on Staphylococcus epidermidis biofilm associated with silicone elastomer. Antimicrob Agents Chemother. 1987 Jun;31(6):889–894. doi: 10.1128/aac.31.6.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Farber B. F., Kaplan M. H., Clogston A. G. Staphylococcus epidermidis extracted slime inhibits the antimicrobial action of glycopeptide antibiotics. J Infect Dis. 1990 Jan;161(1):37–40. doi: 10.1093/infdis/161.1.37. [DOI] [PubMed] [Google Scholar]
  9. Graybill J. R., Ahrens J. Interaction of rifampin with other antifungal agents in experimental murine candidiasis. Rev Infect Dis. 1983 Jul-Aug;5 (Suppl 3):S620–S625. doi: 10.1093/clinids/5.supplement_3.s620. [DOI] [PubMed] [Google Scholar]
  10. Hampton A. A., Sherertz R. J. Vascular-access infections in hospitalized patients. Surg Clin North Am. 1988 Feb;68(1):57–71. doi: 10.1016/s0039-6109(16)44432-4. [DOI] [PubMed] [Google Scholar]
  11. Khardori N., Wong E., Nguyen H., Jeffery-Wiseman C., Wallin E., Tewari R. P., Bodey G. P. Effect of subinhibitory concentrations of clindamycin and trospectomycin on the adherence of Staphylococcus epidermidis in an in vitro model of vascular catheter colonization. J Infect Dis. 1991 Jul;164(1):108–113. doi: 10.1093/infdis/164.1.108. [DOI] [PubMed] [Google Scholar]
  12. Kiehn T. E., Armstrong D. Changes in the spectrum of organisms causing bacteremia and fungemia in immunocompromised patients due to venous access devices. Eur J Clin Microbiol Infect Dis. 1990 Dec;9(12):869–872. doi: 10.1007/BF01967501. [DOI] [PubMed] [Google Scholar]
  13. Maki D. G., Weise C. E., Sarafin H. W. A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med. 1977 Jun 9;296(23):1305–1309. doi: 10.1056/NEJM197706092962301. [DOI] [PubMed] [Google Scholar]
  14. Mandell G. L. The antimicrobial activity of rifampin: emphasis on the relation to phagocytes. Rev Infect Dis. 1983 Jul-Aug;5 (Suppl 3):S463–S467. doi: 10.1093/clinids/5.supplement_3.s463. [DOI] [PubMed] [Google Scholar]
  15. Minuth J. N., Holmes T. M., Musher D. M. Activity of tetracycline, doxycycline, and minocycline against methicillin-susceptible and -resistant staphylococci. Antimicrob Agents Chemother. 1974 Oct;6(4):411–414. doi: 10.1128/aac.6.4.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Norwood S., Ruby A., Civetta J., Cortes V. Catheter-related infections and associated septicemia. Chest. 1991 Apr;99(4):968–975. doi: 10.1378/chest.99.4.968. [DOI] [PubMed] [Google Scholar]
  17. Rex J. H., Bennett J. E., Sugar A. M., Pappas P. G., van der Horst C. M., Edwards J. E., Washburn R. G., Scheld W. M., Karchmer A. W., Dine A. P. A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. Candidemia Study Group and the National Institute. N Engl J Med. 1994 Nov 17;331(20):1325–1330. doi: 10.1056/NEJM199411173312001. [DOI] [PubMed] [Google Scholar]
  18. Sande M. A. The use of rifampin in the treatment of nontuberculous infections: an overview. Rev Infect Dis. 1983 Jul-Aug;5 (Suppl 3):S399–S401. doi: 10.1093/clinids/5.supplement_3.s399. [DOI] [PubMed] [Google Scholar]
  19. Segreti J., Gvazdinskas L. C., Trenholme G. M. In vitro activity of minocycline and rifampin against staphylococci. Diagn Microbiol Infect Dis. 1989 May-Jun;12(3):253–255. doi: 10.1016/0732-8893(89)90022-9. [DOI] [PubMed] [Google Scholar]
  20. Sherertz R. J., Carruth W. A., Hampton A. A., Byron M. P., Solomon D. D. Efficacy of antibiotic-coated catheters in preventing subcutaneous Staphylococcus aureus infection in rabbits. J Infect Dis. 1993 Jan;167(1):98–106. doi: 10.1093/infdis/167.1.98. [DOI] [PubMed] [Google Scholar]
  21. Sherertz R. J., Forman D. M., Solomon D. D. Efficacy of dicloxacillin-coated polyurethane catheters in preventing subcutaneous Staphylococcus aureus infection in mice. Antimicrob Agents Chemother. 1989 Aug;33(8):1174–1178. doi: 10.1128/aac.33.8.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sherertz R. J., Raad I. I., Belani A., Koo L. C., Rand K. H., Pickett D. L., Straub S. A., Fauerbach L. L. Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J Clin Microbiol. 1990 Jan;28(1):76–82. doi: 10.1128/jcm.28.1.76-82.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Trippel S. B. Antibiotic-impregnated cement in total joint arthroplasty. J Bone Joint Surg Am. 1986 Oct;68(8):1297–1302. [PubMed] [Google Scholar]
  24. Waterworth P. M. The effect of minocycline on Candida albicans. J Clin Pathol. 1974 Apr;27(4):269–272. doi: 10.1136/jcp.27.4.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yourassowsky E., van der Linden M. P., Lismont M. J., Crokaert F. Combination of minocycline and rifampicin against methicillin- and gentamicin-resistant Staphylococcus aureus. J Clin Pathol. 1981 May;34(5):559–563. doi: 10.1136/jcp.34.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yuk J. H., Dignani M. C., Harris R. L., Bradshaw M. W., Williams T. W., Jr Minocycline as an alternative antistaphylococcal agent. Rev Infect Dis. 1991 Sep-Oct;13(5):1023–1024. doi: 10.1093/clinids/13.5.1023. [DOI] [PubMed] [Google Scholar]
  27. Zimmerli W., Frei R., Widmer A. F., Rajacic Z. Microbiological tests to predict treatment outcome in experimental device-related infections due to Staphylococcus aureus. J Antimicrob Chemother. 1994 May;33(5):959–967. doi: 10.1093/jac/33.5.959. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES