Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Nov;39(11):2401–2405. doi: 10.1128/aac.39.11.2401

Clinical pharmacokinetics of adefovir in human immunodeficiency virus type 1-infected patients.

K C Cundy 1, P Barditch-Crovo 1, R E Walker 1, A C Collier 1, D Ebeling 1, J Toole 1, H S Jaffe 1
PMCID: PMC162955  PMID: 8585716

Abstract

The pharmacokinetics and bioavailability of adefovir [9-[2-(phosphonomethoxy)ethyl]adenine] were examined at two dose levels in three phase I/II studies in 28 human immunodeficiency type 1-infected patients. The concentrations of adefovir in serum following the intravenous infusion of 1.0 or 3.0 mg/kg of body weight were dose proportional and declined biexponentially, with an overall mean +/- standard deviation terminal half-life of 1.6 +/- 0.5 h (n = 28). Approximately 90% of the intravenous dose was recovered unchanged in the urine in 12 h, and more than 98% was recovered by 24 h postdosing. The overall mean +/- standard deviation total serum clearance of the drug (223 +/- 53 ml/h/kg; n = 25) approximated the renal clearance (205 +/- 78 ml/h/kg; n = 20), which was significantly higher (P < 0.01) than the baseline creatinine clearance in the same patients (88 +/- 18 ml/h/kg; n = 25). Since adefovir is essentially completely unbound in plasma or serum, these data indicate that active tubular secretion accounted for approximately 60% of the clearance of adefovir. The steady-state volume of distribution of adefovir (418 +/- 76 ml/kg; n = 28) suggests that the drug was distributed in total body water. Repeated daily dosing with adefovir at 1.0 mg/kg/day (n = 8) and 3.0 mg/kg/day (n = 4) for 22 days did not significantly alter the pharmacokinetics of the drug; there was no evidence of accumulation. The oral bioavailability of adefovir at a 3.0-mg/kg dose was < 12% (n = 5) on the basis of the concentrations in serum or 16.4% +/- 16.0% on the basis of urinary recovery. The subcutaneous bioavailability of adefovir at a 3.0-mg/kg dose was 102% +/- 8.3% (n = 5) on the basis of concentrations in serum or 84.8% +/- 28.5% on the basis of urinary recovery. These data are consistent with preclinical observations in various species.

Full Text

The Full Text of this article is available as a PDF (238.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balzarini J., Hao Z., Herdewijn P., Johns D. G., De Clercq E. Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonylmethoxyethyl)adenine, a potent anti-human immunodeficiency virus compound. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1499–1503. doi: 10.1073/pnas.88.4.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balzarini J., Naesens L., Herdewijn P., Rosenberg I., Holy A., Pauwels R., Baba M., Johns D. G., De Clercq E. Marked in vivo antiretrovirus activity of 9-(2-phosphonylmethoxyethyl)adenine, a selective anti-human immunodeficiency virus agent. Proc Natl Acad Sci U S A. 1989 Jan;86(1):332–336. doi: 10.1073/pnas.86.1.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balzarini J., Naesens L., Slachmuylders J., Niphuis H., Rosenberg I., Holý A., Schellekens H., De Clercq E. 9-(2-Phosphonylmethoxyethyl)adenine (PMEA) effectively inhibits retrovirus replication in vitro and simian immunodeficiency virus infection in rhesus monkeys. AIDS. 1991 Jan;5(1):21–28. doi: 10.1097/00002030-199101000-00003. [DOI] [PubMed] [Google Scholar]
  4. Bronson J. J., Ho H. T., De Boeck H., Woods K., Ghazzouli I., Martin J. C., Hitchcock M. J. Biochemical pharmacology of acyclic nucleotide analogues. Ann N Y Acad Sci. 1990;616:398–407. doi: 10.1111/j.1749-6632.1990.tb17859.x. [DOI] [PubMed] [Google Scholar]
  5. Cockcroft D. W., Gault M. H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41. doi: 10.1159/000180580. [DOI] [PubMed] [Google Scholar]
  6. Cundy K. C., Fishback J. A., Shaw J. P., Lee M. L., Soike K. F., Visor G. C., Lee W. A. Oral bioavailability of the antiretroviral agent 9-(2-phosphonylmethoxyethyl)adenine (PMEA) from three formulations of the prodrug bis(pivaloyloxymethyl)-PMEA in fasted male cynomolgus monkeys. Pharm Res. 1994 Jun;11(6):839–843. doi: 10.1023/a:1018925723889. [DOI] [PubMed] [Google Scholar]
  7. Cundy K. C., Petty B. G., Flaherty J., Fisher P. E., Polis M. A., Wachsman M., Lietman P. S., Lalezari J. P., Hitchcock M. J., Jaffe H. S. Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 1995 Jun;39(6):1247–1252. doi: 10.1128/aac.39.6.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cundy K. C., Shaw J. P., Lee W. A. Oral, subcutaneous, and intramuscular bioavailabilities of the antiviral nucleotide analog 9-(2-phosphonylmethoxyethyl) adenine in cynomolgus monkeys. Antimicrob Agents Chemother. 1994 Feb;38(2):365–368. doi: 10.1128/aac.38.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Clercq E. Broad-spectrum anti-DNA virus and anti-retrovirus activity of phosphonylmethoxyalkylpurines and -pyrimidines. Biochem Pharmacol. 1991 Aug 8;42(5):963–972. doi: 10.1016/0006-2952(91)90276-b. [DOI] [PubMed] [Google Scholar]
  10. Dudley M. N., Graham K. K., Kaul S., Geletko S., Dunkle L., Browne M., Mayer K. Pharmacokinetics of stavudine in patients with AIDS or AIDS-related complex. J Infect Dis. 1992 Sep;166(3):480–485. doi: 10.1093/infdis/166.3.480. [DOI] [PubMed] [Google Scholar]
  11. Egberink H., Borst M., Niphuis H., Balzarini J., Neu H., Schellekens H., De Clercq E., Horzinek M., Koolen M. Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3087–3091. doi: 10.1073/pnas.87.8.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knupp C. A., Stancato F. A., Papp E. A., Barbhaiya R. H. Quantitation of didanosine in human plasma and urine by high-performance liquid chromatography. J Chromatogr. 1990 Nov 30;533:282–290. doi: 10.1016/s0378-4347(00)82215-x. [DOI] [PubMed] [Google Scholar]
  13. Naesens L., Balzarini J., De Clercq E. Acyclic adenine nucleoside phosphonates in plasma determined by high-performance liquid chromatography with fluorescence detection. Clin Chem. 1992 Apr;38(4):480–485. [PubMed] [Google Scholar]
  14. Naesens L., Balzarini J., De Clercq E. Pharmacokinetics in mice of the anti-retrovirus agent 9-(2-phosphonylmethoxyethyl)adenine. Drug Metab Dispos. 1992 Sep-Oct;20(5):747–752. [PubMed] [Google Scholar]
  15. Pauwels R., Balzarini J., Schols D., Baba M., Desmyter J., Rosenberg I., Holy A., De Clercq E. Phosphonylmethoxyethyl purine derivatives, a new class of anti-human immunodeficiency virus agents. Antimicrob Agents Chemother. 1988 Jul;32(7):1025–1030. doi: 10.1128/aac.32.7.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Russell J. W., Marrero D., Whiterock V. J., Klunk L. J., Starrett J. E. Determination of 9-[(2-phosphonylmethoxy)ethyl]adenine in rat urine by high-performance liquid chromatography with fluorescence detection. J Chromatogr. 1991 Dec 6;572(1-2):321–326. doi: 10.1016/0378-4347(91)80498-2. [DOI] [PubMed] [Google Scholar]
  17. Srinivas R. V., Robbins B. L., Connelly M. C., Gong Y. F., Bischofberger N., Fridland A. Metabolism and in vitro antiretroviral activities of bis(pivaloyloxymethyl) prodrugs of acyclic nucleoside phosphonates. Antimicrob Agents Chemother. 1993 Oct;37(10):2247–2250. doi: 10.1128/aac.37.10.2247. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES