Abstract
Previous studies have demonstrated synergy between an aminoglycoside and a beta-lactam for treating Pseudomonas aeruginosa infections. Cystic fibrosis patients are prone to infection by this bacterium, which becomes very resistant with recurrent antibiotic treatments. The purpose of this study was to evaluate the susceptibility patterns of 122 isolates of P. aeruginosa isolated from cystic fibrosis patients to five individual antibiotics (tobramycin, ceftazidime, piperacillin, ticarcillin, and imipenem) and to four antibiotic combinations (tobramycin associated with one of the other antibiotics). Strains were selected because of their resistance to individual antimicrobial agents, which ranged from 21.3% for imipenem to 56.5% for tobramycin. By using an automated broth microdilution method, we were able to demonstrate synergy against 39 strains (32%) with tobramycin-ticarcillin, against 38 strains (31%) with tobramycin-piperacillin, against 47 strains (39%) with tobramycin-ceftazidime, and against 23 strains (19%) with tobramycin-imipenem. Of the 122 isolates, 77 (63%) were rendered significantly susceptible to at least one of the four antibiotic combinations by synergy. These results suggest that when appropriate technology is available, susceptibility to antibiotic combinations greatly improves the guide to antibiotic therapy for infections due to P. aeruginosa in cystic fibrosis patients.
Full Text
The Full Text of this article is available as a PDF (167.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berenbaum M. C. A method for testing for synergy with any number of agents. J Infect Dis. 1978 Feb;137(2):122–130. doi: 10.1093/infdis/137.2.122. [DOI] [PubMed] [Google Scholar]
- Bosso J. A., Saxon B. A., Matsen J. M. In vitro activities of combinations of aztreonam, ciprofloxacin, and ceftazidime against clinical isolates of Pseudomonas aeruginosa and Pseudomonas cepacia from patients with cystic fibrosis. Antimicrob Agents Chemother. 1990 Mar;34(3):487–488. doi: 10.1128/aac.34.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan E. L., Zabransky R. J. Determination of synergy by two methods with eight antimicrobial combinations against tobramycin-susceptible and tobramycin-resistant strains of Pseudomonas. Diagn Microbiol Infect Dis. 1987 Feb;6(2):157–164. doi: 10.1016/0732-8893(87)90101-5. [DOI] [PubMed] [Google Scholar]
- Döring G., Albus A., Høiby N. Immunologic aspects of cystic fibrosis. Chest. 1988 Aug;94(2 Suppl):109S–115S. doi: 10.1378/chest.94.2_supplement.109s. [DOI] [PubMed] [Google Scholar]
- Elborn J. S., Cordon S. M., Shale D. J. Host inflammatory responses to first isolation of Pseudomonas aeruginosa from sputum in cystic fibrosis. Pediatr Pulmonol. 1993 May;15(5):287–291. doi: 10.1002/ppul.1950150505. [DOI] [PubMed] [Google Scholar]
- FitzSimmons S. C. The changing epidemiology of cystic fibrosis. J Pediatr. 1993 Jan;122(1):1–9. doi: 10.1016/s0022-3476(05)83478-x. [DOI] [PubMed] [Google Scholar]
- Geddes D. M. Antimicrobial therapy against Staphylococcus aureus, Pseudomonas aeruginosa, and Pseudomonas cepacia. Chest. 1988 Aug;94(2 Suppl):140S–145S. doi: 10.1378/chest.94.2_supplement.140s. [DOI] [PubMed] [Google Scholar]
- Gilligan P. H. Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev. 1991 Jan;4(1):35–51. doi: 10.1128/cmr.4.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isles A., Maclusky I., Corey M., Gold R., Prober C., Fleming P., Levison H. Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr. 1984 Feb;104(2):206–210. doi: 10.1016/s0022-3476(84)80993-2. [DOI] [PubMed] [Google Scholar]
- Kerem B., Rommens J. M., Buchanan J. A., Markiewicz D., Cox T. K., Chakravarti A., Buchwald M., Tsui L. C. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. doi: 10.1126/science.2570460. [DOI] [PubMed] [Google Scholar]
- Korvick J. A., Yu V. L. Antimicrobial agent therapy for Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991 Nov;35(11):2167–2172. doi: 10.1128/aac.35.11.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy J. Antibiotic therapy in cystic fibrosis. Evaluation of efficacy. Chest. 1988 Aug;94(2 Suppl):150S–156S. [PubMed] [Google Scholar]
- Michel B. C. Antibacterial therapy in cystic fibrosis. A review of the literature published between 1980 and February 1987. Chest. 1988 Aug;94(2 Suppl):129S–140S. doi: 10.1378/chest.94.2.129s. [DOI] [PubMed] [Google Scholar]
- Mouton J. W., den Hollander J. G., Horrevorts A. M. Emergence of antibiotic resistance amongst Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Antimicrob Chemother. 1993 Jun;31(6):919–926. doi: 10.1093/jac/31.6.919. [DOI] [PubMed] [Google Scholar]
- Smith A. L., Redding G., Doershuk C., Goldmann D., Gore E., Hilman B., Marks M., Moss R., Ramsey B., Rubio T. Sputum changes associated with therapy for endobronchial exacerbation in cystic fibrosis. J Pediatr. 1988 Apr;112(4):547–554. doi: 10.1016/s0022-3476(88)80165-3. [DOI] [PubMed] [Google Scholar]
- Valdes J. M., Baltch A. L., Smith R. P., Hammer M. C., Ritz W. J. The effect of rifampicin on the in-vitro activity of cefpirome or ceftazidime in combination with aminoglycosides against Pseudomonas aeruginosa. J Antimicrob Chemother. 1990 Apr;25(4):575–584. doi: 10.1093/jac/25.4.575. [DOI] [PubMed] [Google Scholar]