Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Nov;39(11):2436–2441. doi: 10.1128/aac.39.11.2436

Evaluation of potent inhibitors of dihydrofolate reductase in a culture model for growth of Pneumocystis carinii.

M S Bartlett 1, M Shaw 1, P Navaran 1, J W Smith 1, S F Queener 1
PMCID: PMC162961  PMID: 8585722

Abstract

Many antifolates are known to inhibit dihydrofolate reductase from murine Pneumocystis carinii, with 50% inhibitory concentrations (IC50s) ranging from 10(-4) to 10(-11) M. The relationship of the potency against isolated enzyme to the potency against intact murine P. carinii cells was explored with 17 compounds that had proven selectivity for or potency against P. carinii dihydrofolate reductase. Pyrimethamine and one analog were inhibitory to P. carinii in culture at concentrations two to seven times the IC50s for the enzyme, suggesting that the compounds may enter P. carinii cells in culture. Methotrexate was a potent inhibitor of P. carinii dihydrofolate reductase, but the concentrations effective in culture were more than 1,000-fold higher than IC50s for the enzyme, since P. carinii lacks an uptake system for methotrexate. Analogs of methotrexate in which chlorine, bromine, or iodine was added to the phenyl ring had improved potency against the isolated enzyme but were markedly less effective in culture; polyglutamation also lowered the activity in culture but improved activity against the enzyme. Substitution of a naphthyl group for the phenyl group of methotrexate produced a compound with improved activity against the enzyme (IC50, 0.00019 microM) and excellent activity in culture (IC50, 0.1 microM). One trimetrexate analog in which an aspartate or a chlorine replaced two of the methoxy groups of trimetrexate was much more potent and was much more selective toward P. carinii dihydrofolate reductase than trimetrexate; this analog was also as active as trimetrexate in culture. These studies suggest that modifications of antifolate structures can be made that facilitate activity against intact organisms while maintaining the high degrees of potency and the selectivities of the agents can be made.

Full Text

The Full Text of this article is available as a PDF (256.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allegra C. J., Kovacs J. A., Drake J. C., Swan J. C., Chabner B. A., Masur H. Activity of antifolates against Pneumocystis carinii dihydrofolate reductase and identification of a potent new agent. J Exp Med. 1987 Mar 1;165(3):926–931. doi: 10.1084/jem.165.3.926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atzori C., Bruno A., Chichino G., Bombardelli E., Scaglia M., Ghione M. Activity of bilobalide, a sesquiterpene from Ginkgo biloba, on Pneumocystis carinii. Antimicrob Agents Chemother. 1993 Jul;37(7):1492–1496. doi: 10.1128/aac.37.7.1492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartlett M. S., Edlind T. D., Durkin M. M., Shaw M. M., Queener S. F., Smith J. W. Antimicrotubule benzimidazoles inhibit in vitro growth of Pneumocystis carinii. Antimicrob Agents Chemother. 1992 Apr;36(4):779–782. doi: 10.1128/aac.36.4.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bartlett M. S., Queener S. F., Shaw M. M., Richardson J. D., Smith J. W. Pneumocystis carinii is resistant to imidazole antifungal agents. Antimicrob Agents Chemother. 1994 Aug;38(8):1859–1861. doi: 10.1128/aac.38.8.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Broughton M. C., Queener S. F. Pneumocystis carinii dihydrofolate reductase used to screen potential antipneumocystis drugs. Antimicrob Agents Chemother. 1991 Jul;35(7):1348–1355. doi: 10.1128/aac.35.7.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Comley J. C., Mullin R. J., Wolfe L. A., Hanlon M. H., Ferone R. Microculture screening assay for primary in vitro evaluation of drugs against Pneumocystis carinii. Antimicrob Agents Chemother. 1991 Oct;35(10):1965–1974. doi: 10.1128/aac.35.10.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Durkin M. M., Bartlett M. S., Queener S. F., Shaw M. M., Lee C. H., Smith J. W. An enzyme-linked immunosorbent assay for enumeration of Pneumocystis carinii in vitro and in vivo. J Clin Microbiol. 1992 Dec;30(12):3258–3262. doi: 10.1128/jcm.30.12.3258-3262.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edman J. C., Edman U., Cao M., Lundgren B., Kovacs J. A., Santi D. V. Isolation and expression of the Pneumocystis carinii dihydrofolate reductase gene. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8625–8629. doi: 10.1073/pnas.86.22.8625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fishman J. A., Queener S. F., Roth R. S., Bartlett M. S. Activity of topoisomerase inhibitors against Pneumocystis carinii in vitro and in an inoculated mouse model. Antimicrob Agents Chemother. 1993 Jul;37(7):1543–1546. doi: 10.1128/aac.37.7.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gangjee A., Devraj R., Queener S. F., Kisliuk R. L. Novel 2,4-diamino-5-substituted furo[2,3-d]-pyrimidines as potential antifolates. Adv Exp Med Biol. 1993;338:445–448. doi: 10.1007/978-1-4615-2960-6_89. [DOI] [PubMed] [Google Scholar]
  11. Gangjee A., Mavandadi F., Queener S. F. Synthesis and biological activity of tricyclic, conformationally restricted analogs of lipophilic pyrido[2,3-d]-pyrimidine antifolates. Adv Exp Med Biol. 1993;338:441–444. doi: 10.1007/978-1-4615-2960-6_88. [DOI] [PubMed] [Google Scholar]
  12. Gangjee A., Vasudevan A., Queener S. F. Bicyclic conformationally restricted analogs of nonclassical pyrido[2,3-d] pyrimidines as potential inhibitors of dihydrofolate reductases. Adv Exp Med Biol. 1993;338:449–452. doi: 10.1007/978-1-4615-2960-6_90. [DOI] [PubMed] [Google Scholar]
  13. Kovacs J. A., Allegra C. J., Beaver J., Boarman D., Lewis M., Parrillo J. E., Chabner B., Masur H. Characterization of de novo folate synthesis in Pneumocystis carinii and Toxoplasma gondii: potential for screening therapeutic agents. J Infect Dis. 1989 Aug;160(2):312–320. doi: 10.1093/infdis/160.2.312. [DOI] [PubMed] [Google Scholar]
  14. Kovacs J. A., Allegra C. J., Masur H. Characterization of dihydrofolate reductase of Pneumocystis carinii and Toxoplasma gondii. Exp Parasitol. 1990 Jul;71(1):60–68. doi: 10.1016/0014-4894(90)90008-z. [DOI] [PubMed] [Google Scholar]
  15. Kovacs J. A., Allegra C. J., Swan J. C., Drake J. C., Parrillo J. E., Chabner B. A., Masur H. Potent antipneumocystis and antitoxoplasma activities of piritrexim, a lipid-soluble antifolate. Antimicrob Agents Chemother. 1988 Apr;32(4):430–433. doi: 10.1128/aac.32.4.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Margosiak S. A., Appleman J. R., Santi D. V., Blakley R. L. Dihydrofolate reductase from the pathogenic fungus Pneumocystis carinii: catalytic properties and interaction with antifolates. Arch Biochem Biophys. 1993 Sep;305(2):499–508. doi: 10.1006/abbi.1993.1453. [DOI] [PubMed] [Google Scholar]
  17. Marlowe C. K., Selassie C. D., Santi D. V. Quantitative structure-activity relationships of the inhibition of Pneumocystis carinii dihydrofolate reductase by 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(X-phenyl)-s-triazines. J Med Chem. 1995 Mar 17;38(6):967–972. doi: 10.1021/jm00006a016. [DOI] [PubMed] [Google Scholar]
  18. Merali S., Meshnick S. R. Susceptibility of Pneumocystis carinii to artemisinin in vitro. Antimicrob Agents Chemother. 1991 Jun;35(6):1225–1227. doi: 10.1128/aac.35.6.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Piper J. R., Johnson C. A., Hosmer C. A., Carter R. L., Pfefferkorn E. R., Borotz S. E., Queener S. F. Lipophilic antifolates as candidates against opportunistic infections. Adv Exp Med Biol. 1993;338:429–433. doi: 10.1007/978-1-4615-2960-6_86. [DOI] [PubMed] [Google Scholar]
  20. Queener S. F., Bartlett M. S., Nasr M., Smith J. W. 8-aminoquinolines effective against Pneumocystis carinii in vitro and in vivo. Antimicrob Agents Chemother. 1993 Oct;37(10):2166–2172. doi: 10.1128/aac.37.10.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Queener S. F., Bartlett M. S., Richardson J. D., Durkin M. M., Jay M. A., Smith J. W. Activity of clindamycin with primaquine against Pneumocystis carinii in vitro and in vivo. Antimicrob Agents Chemother. 1988 Jun;32(6):807–813. doi: 10.1128/aac.32.6.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Queener S. F., Fujioka H., Nishiyama Y., Furukawa H., Bartlett M. S., Smith J. W. In vitro activities of acridone alkaloids against Pneumocystis carinii. Antimicrob Agents Chemother. 1991 Feb;35(2):377–379. doi: 10.1128/aac.35.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rosowsky A., Freisheim J. H., Hynes J. B., Queener S. F., Bartlett M., Smith J. W., Lazarus H., Modest E. J. Tricyclic 2,4-diaminopyrimidines with broad antifolate activity and the ability to inhibit Pneumocystis carinii growth in cultured human lung fibroblasts in the presence of leucovorin. Biochem Pharmacol. 1989 Aug 15;38(16):2677–2684. doi: 10.1016/0006-2952(89)90554-6. [DOI] [PubMed] [Google Scholar]
  24. Rosowsky A., Hynes J. B., Queener S. F. Structure-activity and structure-selectivity studies on diaminoquinazolines and other inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. Antimicrob Agents Chemother. 1995 Jan;39(1):79–86. doi: 10.1128/aac.39.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rosowsky A., Mota C. E., Wright J. E., Freisheim J. H., Heusner J. J., McCormack J. J., Queener S. F. 2,4-Diaminothieno[2,3-d]pyrimidine analogues of trimetrexate and piritrexim as potential inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. J Med Chem. 1993 Oct 15;36(21):3103–3112. doi: 10.1021/jm00073a009. [DOI] [PubMed] [Google Scholar]
  26. Rosowsky A., Mota C. E., Wright J. E., Queener S. F. 2,4-Diamino-5-chloroquinazoline analogues of trimetrexate and piritrexim: synthesis and antifolate activity. J Med Chem. 1994 Dec 23;37(26):4522–4528. doi: 10.1021/jm00052a011. [DOI] [PubMed] [Google Scholar]
  27. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  28. Then R. L., Hartman P. G., Kompis I., Santi D. Selective inhibition of dihydrofolate reductase from problem human pathogens. Adv Exp Med Biol. 1993;338:533–536. doi: 10.1007/978-1-4615-2960-6_108. [DOI] [PubMed] [Google Scholar]
  29. Walzer P. D., Foy J., Steele P., White M. Treatment of experimental pneumocystosis: review of 7 years of experience and development of a new system for classifying antimicrobial drugs. Antimicrob Agents Chemother. 1992 Sep;36(9):1943–1950. doi: 10.1128/aac.36.9.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES