Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Nov;39(11):2499–2502. doi: 10.1128/aac.39.11.2499

Antimicrobial and mercury resistance in aerobic gram-negative bacilli in fecal flora among persons with and without dental amalgam fillings.

M Osterblad 1, J Leistevuo 1, T Leistevuo 1, H Järvinen 1, L Pyy 1, J Tenovuo 1, P Huovinen 1
PMCID: PMC162972  PMID: 8585733

Abstract

Antimicrobial resistance is more widespread than can be accounted for as being a consequence of the selection pressure caused by the use of antibiotics alone. In this study, we tested the hypothesis that a high mercury content in feces might select for mercury-resistant bacteria and thus for antimicrobial resistance linked to mercury resistance. Three subject groups with different exposures to dental amalgam fillings were compared. None of the subjects had taken antimicrobial agents during the three preceding months or longer. The group exposed to dental amalgam (n = 92) had 13 times more mercury in feces than the group that had never been exposed to amalgam (n = 43) and the group whose amalgam fillings had been removed (n = 56). No significant differences in either mercury resistance or antibiotic resistance in the fecal aerobic gram-negative flora of these subject groups were seen. The following antimicrobial resistance frequencies were detected with a replica plating method: > or = 1% resistance was seen in 40% of the subjects for ampicillin, 14% of the subjects for cefuroxime, 6% of the subjects for nalidixic acid, 14% of the subjects for trimethoprim, 19% of the subjects for sulfamethoxazole, and 25% of the subjects for tetracycline. The amount of mercury in feces derived from amalgam was not selective for any resistance factors in aerobic gram-negative bacteria, but antimicrobial resistance was widespread even among healthy subjects with no recent exposure to antibiotics.

Full Text

The Full Text of this article is available as a PDF (266.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amyes S. G., Tait S., Thomson C. J., Payne D. J., Nandivada L. S., Jesudason M. V., Mukundan U. D., Young H. K. The incidence of antibiotic resistance in aerobic faecal flora in south India. J Antimicrob Chemother. 1992 Apr;29(4):415–425. doi: 10.1093/jac/29.4.415. [DOI] [PubMed] [Google Scholar]
  2. Barkay T. Adaptation of aquatic microbial communities to hg stress. Appl Environ Microbiol. 1987 Dec;53(12):2725–2732. doi: 10.1128/aem.53.12.2725-2732.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonten M., Stobberingh E., Philips J., Houben A. Antibiotic resistance of Escherichia coli in fecal samples of healthy people in two different areas in an industrialized country. Infection. 1992 Sep-Oct;20(5):258–262. doi: 10.1007/BF01710790. [DOI] [PubMed] [Google Scholar]
  4. Bonten M., Stobberingh E., Philips J., Houben A. High prevalence of antibiotic resistant Escherichia coli in faecal samples of students in the south-east of The Netherlands. J Antimicrob Chemother. 1990 Oct;26(4):585–592. doi: 10.1093/jac/26.4.585. [DOI] [PubMed] [Google Scholar]
  5. Burman L. G., Haeggman S., Kuistila M., Tullus K., Huovinen P. Epidemiology of plasmid-mediated beta-lactamases in enterobacteria Swedish neonatal wards and relation to antimicrobial therapy. Antimicrob Agents Chemother. 1992 May;36(5):989–992. doi: 10.1128/aac.36.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Degener J. E., Smit A. C., Michel M. F., Valkenburg H. A., Muller L. Faecal carriage of aerobic gram-negative bacilli and drug resistance of Escherichia coli in different age-groups in Dutch urban communities. J Med Microbiol. 1983 May;16(2):139–145. doi: 10.1099/00222615-16-2-139. [DOI] [PubMed] [Google Scholar]
  7. Farrell R. E., Germida J. J., Huang P. M. Effects of chemical speciation in growth media on the toxicity of mercury(II). Appl Environ Microbiol. 1993 May;59(5):1507–1514. doi: 10.1128/aem.59.5.1507-1514.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grewal J. S., Tiwari R. P. Resistance to metal ions and antibiotics in Escherichia coli isolated from foodstuffs. J Med Microbiol. 1990 Aug;32(4):223–226. doi: 10.1099/00222615-32-4-223. [DOI] [PubMed] [Google Scholar]
  9. Griffin P. M., Tauxe R. V., Redd S. C., Puhr N. D., Hargrett-Bean N., Blake P. A. Emergence of highly trimethoprim-sulfamethoxazole-resistant Shigella in a native American population: an epidemiologic study. Am J Epidemiol. 1989 May;129(5):1042–1051. doi: 10.1093/oxfordjournals.aje.a115208. [DOI] [PubMed] [Google Scholar]
  10. Heikkilä E., Skurnik M., Sundström L., Huovinen P. A novel dihydrofolate reductase cassette inserted in an integron borne on a Tn21-like element. Antimicrob Agents Chemother. 1993 Jun;37(6):1297–1304. doi: 10.1128/aac.37.6.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heikkilä E., Sundström L., Skurnik M., Huovinen P. Analysis of genetic localization of the type I trimethoprim resistance gene from Escherichia coli isolated in Finland. Antimicrob Agents Chemother. 1991 Aug;35(8):1562–1569. doi: 10.1128/aac.35.8.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huovinen P., Mattila T., Kiminki O., Pulkkinen L., Huovinen S., Koskela M., Sunila R., Toivanen P. Emergence of trimethoprim resistance in fecal flora. Antimicrob Agents Chemother. 1985 Aug;28(2):354–356. doi: 10.1128/aac.28.2.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LEDERBERG J., LEDERBERG E. M. Replica plating and indirect selection of bacterial mutants. J Bacteriol. 1952 Mar;63(3):399–406. doi: 10.1128/jb.63.3.399-406.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Levy S. B., Marshall B., Schluederberg S., Rowse D., Davis J. High frequency of antimicrobial resistance in human fecal flora. Antimicrob Agents Chemother. 1988 Dec;32(12):1801–1806. doi: 10.1128/aac.32.12.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. London N., Nijsten R., Mertens P., v d Bogaard A., Stobberingh E. Effect of antibiotic therapy on the antibiotic resistance of faecal Escherichia coli in patients attending general practitioners. J Antimicrob Chemother. 1994 Aug;34(2):239–246. doi: 10.1093/jac/34.2.239. [DOI] [PubMed] [Google Scholar]
  16. Magos L., Cernik A. A. A rapid method for estimating mercury in undigested biological samples. Br J Ind Med. 1969 Apr;26(2):144–149. doi: 10.1136/oem.26.2.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McGowan J. E., Jr Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Rev Infect Dis. 1983 Nov-Dec;5(6):1033–1048. doi: 10.1093/clinids/5.6.1033. [DOI] [PubMed] [Google Scholar]
  18. Nakahara H., Ishikawa T., Sarai Y., Kondo I., Kozukue H., Silver S. Linkage of mercury, cadmium, and arsenate and drug resistance in clinical isolates of Pseudomonas aeruginosa. Appl Environ Microbiol. 1977 Apr;33(4):975–976. doi: 10.1128/aem.33.4.975-976.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Porter F. D., Silver S., Ong C., Nakahara H. Selection for mercurial resistance in hospital settings. Antimicrob Agents Chemother. 1982 Nov;22(5):852–858. doi: 10.1128/aac.22.5.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Summers A. O., Wireman J., Vimy M. J., Lorscheider F. L., Marshall B., Levy S. B., Bennett S., Billard L. Mercury released from dental "silver" fillings provokes an increase in mercury- and antibiotic-resistant bacteria in oral and intestinal floras of primates. Antimicrob Agents Chemother. 1993 Apr;37(4):825–834. doi: 10.1128/aac.37.4.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tanaka M., Yamamoto T., Sawai T. Evolution of complex resistance transposons from an ancestral mercury transposon. J Bacteriol. 1983 Mar;153(3):1432–1438. doi: 10.1128/jb.153.3.1432-1438.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wickham G. S., Atlas R. M. Plasmid frequency fluctuations in bacterial populations from chemically stressed soil communities. Appl Environ Microbiol. 1988 Sep;54(9):2192–2196. doi: 10.1128/aem.54.9.2192-2196.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. de la Cruz F., Grinsted J. Genetic and molecular characterization of Tn21, a multiple resistance transposon from R100.1. J Bacteriol. 1982 Jul;151(1):222–228. doi: 10.1128/jb.151.1.222-228.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES