Abstract
5'-Deoxy-5'-(methylthio)adenosine (MTA) is an S-adenosylmethionine metabolite that is generated as a by-product of polyamine biosynthesis. In mammalian cells, MTA undergoes a phosphorolytic cleavage catalyzed by MTA phosphorylase to produce adenine and 5-deoxy-5-(methylthio)ribose-1-phosphate (MTRP). Adenine is utilized in purine salvage pathways, and MTRP is subsequently recycled to methionine. Whereas some microorganisms metabolize MTA to MTRP via MTA phosphorylase, others metabolize MTA to MTRP in two steps via initial cleavage by MTA nucleosidase to adenine and 5-deoxy-5-(methylthio)ribose (MTR) followed by conversion of MTR to MTRP by MTR kinase. In order to assess the extent to which these pathways may be operative in Plasmodium falciparum, we have examined a series of 5'-alkyl-substituted analogs of MTA and the related MTR analogs and compared their abilities to inhibit in vitro growth of this malarial parasite. The MTR analogs 5-deoxy-5-(ethylthio)ribose and 5-deoxy-5-(hydroxyethylthio)ribose were inactive at concentrations up to 1 mM, and 5-deoxy-5-(monofluoroethylthio)ribose was weakly active (50% inhibitory concentration = 700 microM). In comparison, the MTA analogs, 5'-deoxy-5'-(ethylthio)adenosine,5'-deoxy-5'-(hydroxyethylthio)ade nosine (HETA), and 5'-deoxy-5'-(monofluoroethylthio)adenosine, had 50% inhibitory concentrations of 80, 46, and 61 microM, respectively. Extracts of P. falciparum were found to have substantial MTA phosphorylase activity. Coadministration of MTA with HETA partially protected the parasites against the growth-inhibitory effects of HETA. Results of this study indicate that P. falciparum has an active MTA phosphorylase that can be targeted by analogs of MTA.
Full Text
The Full Text of this article is available as a PDF (290.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bacchi C. J., Sufrin J. R., Nathan H. C., Spiess A. J., Hannan T., Garofalo J., Alecia K., Katz L., Yarlett N. 5'-Alkyl-substituted analogs of 5'-methylthioadenosine as trypanocides. Antimicrob Agents Chemother. 1991 Jul;35(7):1315–1320. doi: 10.1128/aac.35.7.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byers T. L., Bush T. L., McCann P. P., Bitonti A. J. Antitrypanosomal effects of polyamine biosynthesis inhibitors correlate with increases in Trypanosoma brucei brucei S-adenosyl-L-methionine. Biochem J. 1991 Mar 1;274(Pt 2):527–533. doi: 10.1042/bj2740527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desjardins R. E., Canfield C. J., Haynes J. D., Chulay J. D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979 Dec;16(6):710–718. doi: 10.1128/aac.16.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fairfield A. S., Meshnick S. R., Eaton J. W. Malaria parasites adopt host cell superoxide dismutase. Science. 1983 Aug 19;221(4612):764–766. doi: 10.1126/science.6348944. [DOI] [PubMed] [Google Scholar]
- Fitchen J. H., Riscoe M. K., Dana B. W., Lawrence H. J., Ferro A. J. Methylthioadenosine phosphorylase deficiency in human leukemias and solid tumors. Cancer Res. 1986 Oct;46(10):5409–5412. [PubMed] [Google Scholar]
- Fitchen J. H., Riscoe M. K., Ferro A. J. Exploitation of methylthioribose kinase in the development of antiprotozoal drugs. Adv Exp Med Biol. 1988;250:199–210. doi: 10.1007/978-1-4684-5637-0_18. [DOI] [PubMed] [Google Scholar]
- Ghoda L. Y., Savarese T. M., Northup C. H., Parks R. E., Jr, Garofalo J., Katz L., Ellenbogen B. B., Bacchi C. J. Substrate specificities of 5'-deoxy-5'-methylthioadenosine phosphorylase from Trypanosoma brucei brucei and mammalian cells. Mol Biochem Parasitol. 1988 Jan 15;27(2-3):109–118. doi: 10.1016/0166-6851(88)90030-8. [DOI] [PubMed] [Google Scholar]
- Kikugawa K., Iizuka K., Higuchi Y., Hirayama H., Ichino M. Platelet aggregation inhibitors. 2. Inhibition of platelet aggregation by 5'-, 2-, 6-, and 8-substituted adenosines. J Med Chem. 1972 Apr;15(4):387–390. doi: 10.1021/jm00274a015. [DOI] [PubMed] [Google Scholar]
- Kuhn R., Jahn W. Vom Adenosin abgeleitete Thioäther und S-Oxide. Chem Ber. 1965 Jun;98(6):1699–1704. doi: 10.1002/cber.19650980603. [DOI] [PubMed] [Google Scholar]
- Makler M. T., Ries J. M., Williams J. A., Bancroft J. E., Piper R. C., Gibbins B. L., Hinrichs D. J. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg. 1993 Jun;48(6):739–741. doi: 10.4269/ajtmh.1993.48.739. [DOI] [PubMed] [Google Scholar]
- Miller R. L., Toorchen D. P. MTA phosphorylase in protozoa: a potential target for chemotherapeutic attack. Adv Exp Med Biol. 1988;250:211–218. doi: 10.1007/978-1-4684-5637-0_19. [DOI] [PubMed] [Google Scholar]
- Myers R. W., Abeles R. H. Conversion of 5-S-ethyl-5-thio-D-ribose to ethionine in Klebsiella pneumoniae. Basis for the selective toxicity of 5-S-ethyl-5-thio-D-ribose. J Biol Chem. 1989 Jun 25;264(18):10547–10551. [PubMed] [Google Scholar]
- Myers R. W., Abeles R. H. Conversion of 5-S-methyl-5-thio-D-ribose to methionine in Klebsiella pneumoniae. Stable isotope incorporation studies of the terminal enzymatic reactions in the pathway. J Biol Chem. 1990 Oct 5;265(28):16913–16921. [PubMed] [Google Scholar]
- Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
- Riscoe M. K., Ferro A. J., Fitchen J. H. Analogs of 5-methylthioribose, a novel class of antiprotozoal agents. Antimicrob Agents Chemother. 1988 Dec;32(12):1904–1906. doi: 10.1128/aac.32.12.1904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riscoe M. K., Ferro A. J., Fitchen J. H. Methionine recycling as a target for antiprotozoal drug development. Parasitol Today. 1989 Oct;5(10):330–333. doi: 10.1016/0169-4758(89)90128-2. [DOI] [PubMed] [Google Scholar]
- Sufrin J. R., Spiess A. J., Kramer D. L., Libby P. R., Miller J. T., Bernacki R. J., Lee Y. H., Borchardt R. T., Porter C. W. Targeting 5'-deoxy-5'-(methylthio)adenosine phosphorylase by 5'-haloalkyl analogues of 5'-deoxy-5'-(methylthio)adenosine. J Med Chem. 1991 Aug;34(8):2600–2606. doi: 10.1021/jm00112a039. [DOI] [PubMed] [Google Scholar]
- Toohey J. I. Methylthioadenosine nucleoside phosphorylase deficiency in methylthio-dependent cancer cells. Biochem Biophys Res Commun. 1978 Jul 14;83(1):27–35. doi: 10.1016/0006-291x(78)90393-5. [DOI] [PubMed] [Google Scholar]
- Tower P. A., Alexander D. B., Johnson L. L., Riscoe M. K. Regulation of methylthioribose kinase by methionine in Klebsiella pneumoniae. J Gen Microbiol. 1993 May;139(5):1027–1031. doi: 10.1099/00221287-139-5-1027. [DOI] [PubMed] [Google Scholar]
- Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
- Trager W., Robert-Gero M., Lederer E. Antimalarial activity of S-isobutyl adenosine against Plasmodium falciparum in culture. FEBS Lett. 1978 Jan 15;85(2):264–266. doi: 10.1016/0014-5793(78)80469-4. [DOI] [PubMed] [Google Scholar]
- Trager W., Tershakovec M., Chiang P. K., Cantoni G. L. Plasmodium falciparum: antimalarial activity in culture of sinefungin and other methylation inhibitors. Exp Parasitol. 1980 Aug;50(1):83–89. doi: 10.1016/0014-4894(80)90010-7. [DOI] [PubMed] [Google Scholar]
- Yarlett N., Bacchi C. J. Effect of DL-alpha-difluoromethylornithine on methionine cycle intermediates in Trypanosoma brucei brucei. Mol Biochem Parasitol. 1988 Jan 1;27(1):1–10. doi: 10.1016/0166-6851(88)90019-9. [DOI] [PubMed] [Google Scholar]