Abstract
We determined the anti-human immunodeficiency virus type 1 (anti-HIV-1) activities of various dideoxy-nucleoside analogs by using phytohemagglutinin-activated peripheral blood mononuclear cells (PHA-PBMs) and resting PBMs (R-PBMs) as target cells. The comparative order of anti-HIV-1 activity in PHA-PBMs was azidothymidine (AZT) > dideoxycytidine (ddC) > dideoxythymidinene (d4T) > dideoxyinosine (ddI) and 9-(2-phosphonylmethoxyethyl)adenine (PMEA) > 2'-beta-fluoro-dideoxyadenosine (F-ara-ddA), while that in R-PBMs was ddC > ddI, PMEA, and F-ara-ddA, >> AZT and d4T. A pronucleotide, bis-(S-acetylthioethanol)phosphotriester-ddAMP, which bypasses the anabolic monophosphorylation step for the intracellular delivery of ddAMP, was highly active both in PHA-PBMs and R-PBMs. These data may have basic and clinical relevance in the design of anti-HIV chemotherapy, particularly combination chemotherapy with dideoxynucleosides, and in the development of active pronucleotides.
Full Text
The Full Text of this article is available as a PDF (250.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bukrinsky M. I., Stanwick T. L., Dempsey M. P., Stevenson M. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science. 1991 Oct 18;254(5030):423–427. doi: 10.1126/science.1925601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eriksson S., Kierdaszuk B., Munch-Petersen B., Oberg B., Johansson N. G. Comparison of the substrate specificities of human thymidine kinase 1 and 2 and deoxycytidine kinase toward antiviral and cytostatic nucleoside analogs. Biochem Biophys Res Commun. 1991 Apr 30;176(2):586–592. doi: 10.1016/s0006-291x(05)80224-4. [DOI] [PubMed] [Google Scholar]
- Gao W. Y., Agbaria R., Driscoll J. S., Mitsuya H. Divergent anti-human immunodeficiency virus activity and anabolic phosphorylation of 2',3'-dideoxynucleoside analogs in resting and activated human cells. J Biol Chem. 1994 Apr 29;269(17):12633–12638. [PubMed] [Google Scholar]
- Gao W. Y., Shirasaka T., Johns D. G., Broder S., Mitsuya H. Differential phosphorylation of azidothymidine, dideoxycytidine, and dideoxyinosine in resting and activated peripheral blood mononuclear cells. J Clin Invest. 1993 May;91(5):2326–2333. doi: 10.1172/JCI116463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harel J., Rassart E., Jolicoeur P. Cell cycle dependence of synthesis of unintegrated viral DNA in mouse cells newly infected with murine leukemia virus. Virology. 1981 Apr 15;110(1):202–207. doi: 10.1016/0042-6822(81)90022-2. [DOI] [PubMed] [Google Scholar]
- Johnson M. A., Fridland A. Phosphorylation of 2',3'-dideoxyinosine by cytosolic 5'-nucleotidase of human lymphoid cells. Mol Pharmacol. 1989 Aug;36(2):291–295. [PubMed] [Google Scholar]
- Kageyama S., Mimoto T., Murakawa Y., Nomizu M., Ford H., Jr, Shirasaka T., Gulnik S., Erickson J., Takada K., Hayashi H. In vitro anti-human immunodeficiency virus (HIV) activities of transition state mimetic HIV protease inhibitors containing allophenylnorstatine. Antimicrob Agents Chemother. 1993 Apr;37(4):810–817. doi: 10.1128/aac.37.4.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee L. S., Cheng Y. C. Human deoxythymidine kinase. I. Purification and general properties of the cytoplasmic and mitochondrial isozymes derived from blast cells of acute myelocytic leukemia. J Biol Chem. 1976 May 10;251(9):2600–2604. [PubMed] [Google Scholar]
- Mayers D. L., McCutchan F. E., Sanders-Buell E. E., Merritt L. I., Dilworth S., Fowler A. K., Marks C. A., Ruiz N. M., Richman D. D., Roberts C. R. Characterization of HIV isolates arising after prolonged zidovudine therapy. J Acquir Immune Defic Syndr. 1992;5(8):749–759. [PubMed] [Google Scholar]
- Mitsuya H., Yarchoan R., Broder S. Molecular targets for AIDS therapy. Science. 1990 Sep 28;249(4976):1533–1544. doi: 10.1126/science.1699273. [DOI] [PubMed] [Google Scholar]
- Perigaud C., Aubertin A. M., Benzaria S., Pelicano H., Girardet J. L., Maury G., Gosselin G., Kirn A., Imbach J. L. Equal inhibition of the replication of human immunodeficiency virus in human T-cell culture by ddA bis(SATE)phosphotriester and 3'-azido-2',3'-dideoxythymidine. Biochem Pharmacol. 1994 Jul 5;48(1):11–14. doi: 10.1016/0006-2952(94)90217-8. [DOI] [PubMed] [Google Scholar]
- Schinazi R. F., Sommadossi J. P., Saalmann V., Cannon D. L., Xie M. Y., Hart G. C., Smith G. A., Hahn E. F. Activities of 3'-azido-3'-deoxythymidine nucleotide dimers in primary lymphocytes infected with human immunodeficiency virus type 1. Antimicrob Agents Chemother. 1990 Jun;34(6):1061–1067. doi: 10.1128/aac.34.6.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirasaka T., Yarchoan R., O'Brien M. C., Husson R. N., Anderson B. D., Kojima E., Shimada T., Broder S., Mitsuya H. Changes in drug sensitivity of human immunodeficiency virus type 1 during therapy with azidothymidine, dideoxycytidine, and dideoxyinosine: an in vitro comparative study. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):562–566. doi: 10.1073/pnas.90.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker C. M., Moody D. J., Stites D. P., Levy J. A. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science. 1986 Dec 19;234(4783):1563–1566. doi: 10.1126/science.2431484. [DOI] [PubMed] [Google Scholar]
- Zack J. A., Arrigo S. J., Weitsman S. R., Go A. S., Haislip A., Chen I. S. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990 Apr 20;61(2):213–222. doi: 10.1016/0092-8674(90)90802-l. [DOI] [PubMed] [Google Scholar]
- Zack J. A., Haislip A. M., Krogstad P., Chen I. S. Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J Virol. 1992 Mar;66(3):1717–1725. doi: 10.1128/jvi.66.3.1717-1725.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]