Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Dec;39(12):2631–2634. doi: 10.1128/aac.39.12.2631

Autolysis of methicillin-resistant Staphylococcus aureus is involved in synergism between imipenem and cefotiam.

K Matsuda 1, K Nakamura 1, Y Adachi 1, M Inoue 1, M Kawakami 1
PMCID: PMC163002  PMID: 8592992

Abstract

Imipenem-induced autolysis and the activity of imipenem plus cefotiam were studied in 16 strains of methicillin-resistant Staphylococcus aureus (MRSA). The degree of imipenem-induced autolysis and the rate of synergistic action of imipenem plus cefotiam varied among strains and did not correlate with susceptibility to either imipenem or cefotiam. However, the degree of autolysis correlated well with susceptibility to the synergistic action of imipenem plus cefotiam. In methicillin-susceptible S. aureus strains, both imipenem-induced autolysis and the synergistic activity of the combined drugs were less than those observed in MRSA strains. Differences in the degree of autolysis were not due to differences in autolytic enzyme production. The autolysis of imipenem-pretreated MRSA was enhanced further by cefotiam, while treatment of cells in the reverse order did not enhance autolysis. These findings indicate that cell wall impairment in MRSA is caused by exposure to imipenem but not to cefotiam and that this difference in drug actions results in synergism between imipenem and cefotiam. The possible participation of penicillin-binding proteins PBP 2' and PBP4 in the observed effect is discussed.

Full Text

The Full Text of this article is available as a PDF (206.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Best G. K., Best N. H., Koval A. V. Evidence for participation of autolysins in bactericidal action of oxacillin on Staphylococcus aureus. Antimicrob Agents Chemother. 1974 Dec;6(6):825–830. doi: 10.1128/aac.6.6.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chambers H. F. In vitro and in vivo antistaphylococcal activities of L-695,256, a carbapenem with high affinity for the penicillin-binding protein PBP 2a. Antimicrob Agents Chemother. 1995 Feb;39(2):462–466. doi: 10.1128/aac.39.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deguchi K., Yokota N., Koguchi M., Nakane Y., Fukushima Y., Fukayama S., Ishihara R., Oda S., Tanaka S., Sato K. [Annual changes in susceptibility of clinical isolates to midecamycin acetate]. Jpn J Antibiot. 1990 Aug;43(8):1341–1352. [PubMed] [Google Scholar]
  4. Gustafson J. E., Berger-Bächi B., Strässle A., Wilkinson B. J. Autolysis of methicillin-resistant and -susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 1992 Mar;36(3):566–572. doi: 10.1128/aac.36.3.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hartman B. J., Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol. 1984 May;158(2):513–516. doi: 10.1128/jb.158.2.513-516.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hashizume T., Park W., Matsuhashi M. The affinity of imipenem (N-formimidoylthienamycin) for the penicillin-binding proteins of Staphylococcus aureus--binding and release. J Antibiot (Tokyo) 1984 Sep;37(9):1049–1053. doi: 10.7164/antibiotics.37.1049. [DOI] [PubMed] [Google Scholar]
  7. Huff E., Silverman C. S., Adams N. J., Awkard W. S. Extracellular cell wall lytic enzyme from Staphylococcus aureus: purification and partial characterization. J Bacteriol. 1970 Sep;103(3):761–769. doi: 10.1128/jb.103.3.761-769.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Inoue M., Mitsuhashi S. Recombination between phage S1 and the TC-resistant gene on Staphylococcus aureus plasmid. Virology. 1976 Jul 15;72(2):322–329. doi: 10.1016/0042-6822(76)90161-6. [DOI] [PubMed] [Google Scholar]
  9. Kawakami M., Nagai Y., Shimizu S., Mitsuhashi S. Anti-microbial effect of combinations of colistin methanesulfonate and chloramphenicol. I. In vitro effect. J Antibiot (Tokyo) 1971 Dec;24(12):884–891. doi: 10.7164/antibiotics.24.884. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Matsuda K., Asahi Y., Sanada M., Nakagawa S., Tanaka N., Inoue M. In-vitro activity of imipenem combined with beta-lactam antibiotics for methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 1991 Jun;27(6):809–815. doi: 10.1093/jac/27.6.809. [DOI] [PubMed] [Google Scholar]
  12. Oka S., Goto M., Kaji Y., Kimura S., Matsuda K., Asahi Y., Sanada M., Nakagawa S., Inoue M., Shimada K. Synergic activity of imipenem/cilastatin combined with cefotiam against methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 1993 Apr;31(4):533–541. doi: 10.1093/jac/31.4.533. [DOI] [PubMed] [Google Scholar]
  13. Qoronfleh M. W., Wilkinson B. J. Effects of growth of methicillin-resistant and -susceptible Staphylococcus aureus in the presence of beta-lactams on peptidoglycan structure and susceptibility to lytic enzymes. Antimicrob Agents Chemother. 1986 Feb;29(2):250–257. doi: 10.1128/aac.29.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Snowden M. A., Perkins H. R. Cross-linking and O-acetylation of peptidoglycan in Staphylococcus aureus (strains H and MR-1) grown in the presence of sub-growth-inhibitory concentrations of beta-lactam antibiotics. J Gen Microbiol. 1991 Jul;137(7):1661–1666. doi: 10.1099/00221287-137-7-1661. [DOI] [PubMed] [Google Scholar]
  15. Sumita Y., Mitsuhashi S. In vitro synergistic activity between meropenem and other beta-lactams against methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis. 1991 Feb;10(2):77–84. doi: 10.1007/BF01964412. [DOI] [PubMed] [Google Scholar]
  16. Utsui Y., Yokota T. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1985 Sep;28(3):397–403. doi: 10.1128/aac.28.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wada K., Kawasima T., Arakawa M., Ozaki K. [Antibacterial activity of various antibacterial agents against methicillin-resistant Staphylococcus aureus, and difference in antibacterial activity between aminoglycosides by coagulase type. Comparison of isolates obtained in the period from 1982 to 1986 and isolates in recent 6 months]. Jpn J Antibiot. 1990 Feb;43(2):219–227. [PubMed] [Google Scholar]
  18. Wyke A. W., Ward J. B., Hayes M. V., Curtis N. A. A role in vivo for penicillin-binding protein-4 of Staphylococcus aureus. Eur J Biochem. 1981 Oct;119(2):389–393. doi: 10.1111/j.1432-1033.1981.tb05620.x. [DOI] [PubMed] [Google Scholar]
  19. de Jonge B. L., Tomasz A. Abnormal peptidoglycan produced in a methicillin-resistant strain of Staphylococcus aureus grown in the presence of methicillin: functional role for penicillin-binding protein 2A in cell wall synthesis. Antimicrob Agents Chemother. 1993 Feb;37(2):342–346. doi: 10.1128/aac.37.2.342. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES