Abstract
The adherence of 27 clinical Pseudomonas aeruginosa strains to collagen type I was investigated by using a solid-phase assay. The influence of free antibiotics (amikacin, gentamicin, piperacillin, bacitracin, and polymyxin B) and liposome-entrapped antibiotics (amikacin and polymyxin B) on bacterial attachment to collagen type I was examined. The greatest inhibitory effect was shown for free and liposomal amikacin, which decreased the attachment of 74 and 100% of tested strains, respectively. The mean percent attachment (+/- standard deviation) in the presence of free amikacin was 65.7% (+/- 12.0%) as measured by solid-phase assay. In the presence of liposomal amikacin, the attachment ranged from 17.3% (+/- 6.0%) to 42.1% (+/- 9.4%), depending on the antibiotic solvent. In contrast, polymyxin B, even at a subinhibitory concentration, enhanced attachment of all P. aeruginosa isolates to collagen. Liposomal polymyxin B displayed a protective effect only when the encapsulated drug was of a low concentration. Application of liposome-encapsulated amikacin may be advantageous in injured tissues in which extracellular matrix structures become exposed.
Full Text
The Full Text of this article is available as a PDF (251.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyce S. T., Supp A. P., Warden G. D., Holder I. A. Attachment of an aminoglycoside, amikacin, to implantable collagen for local delivery in wounds. Antimicrob Agents Chemother. 1993 Sep;37(9):1890–1895. doi: 10.1128/aac.37.9.1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butcher W. G., Close J., Krajewska-Pietrasik D., Switalski L. M. Antibiotics alter interactions of Staphylococcus aureus with collagenous substrata. Chemotherapy. 1994 Mar-Apr;40(2):114–123. doi: 10.1159/000239182. [DOI] [PubMed] [Google Scholar]
- Conrad R. S., Galanos C. Fatty acid alterations and polymyxin B binding by lipopolysaccharides from Pseudomonas aeruginosa adapted to polymyxin B resistance. Antimicrob Agents Chemother. 1989 Oct;33(10):1724–1728. doi: 10.1128/aac.33.10.1724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coune A. Liposomes as drug delivery system in the treatment of infectious diseases. Potential applications and clinical experience. Infection. 1988 May-Jun;16(3):141–147. doi: 10.1007/BF01644088. [DOI] [PubMed] [Google Scholar]
- Girod de Bentzmann S., Bajolet-Laudinat O., Dupuit F., Pierrot D., Fuchey C., Plotkowski M. C., Puchelle E. Protection of human respiratory epithelium from Pseudomonas aeruginosa adherence by phosphatidylglycerol liposomes. Infect Immun. 1994 Feb;62(2):704–708. doi: 10.1128/iai.62.2.704-708.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregoriadis G., Florence A. T. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs. 1993 Jan;45(1):15–28. doi: 10.2165/00003495-199345010-00003. [DOI] [PubMed] [Google Scholar]
- Isaacs R. D. Borrelia burgdorferi bind to epithelial cell proteoglycans. J Clin Invest. 1994 Feb;93(2):809–819. doi: 10.1172/JCI117035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadurugamuwa J. L., Clarke A. J., Beveridge T. J. Surface action of gentamicin on Pseudomonas aeruginosa. J Bacteriol. 1993 Sep;175(18):5798–5805. doi: 10.1128/jb.175.18.5798-5805.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mai G. T., McCormack J. G., Seow W. K., Pier G. B., Jackson L. A., Thong Y. H. Inhibition of adherence of mucoid Pseudomonas aeruginosa by alginase, specific monoclonal antibodies, and antibiotics. Infect Immun. 1993 Oct;61(10):4338–4343. doi: 10.1128/iai.61.10.4338-4343.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris C. M., George A., Wilson W. W., Champlin F. R. Effect of polymyxin B nonapeptide on daptomycin permeability and cell surface properties in Pseudomonas aeruginosa, Escherichia coli, and Pasteurella multocida. J Antibiot (Tokyo) 1995 Jan;48(1):67–72. doi: 10.7164/antibiotics.48.67. [DOI] [PubMed] [Google Scholar]
- Morrison D. C., Jacobs D. M. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry. 1976 Oct;13(10):813–818. doi: 10.1016/0019-2791(76)90181-6. [DOI] [PubMed] [Google Scholar]
- Nacucchio M. C., Gatto Bellora M. J., Sordelli D. O., D'Aquino M. Enhanced liposome-mediated antibacterial activity of piperacillin and gentamicin against gram-negative bacilli in vitro. J Microencapsul. 1988 Oct-Dec;5(4):303–309. doi: 10.3109/02652048809036726. [DOI] [PubMed] [Google Scholar]
- Piatti G. Bacterial adhesion to respiratory mucosa and its modulation by antibiotics at sub-inhibitory concentrations. Pharmacol Res. 1994 Dec;30(4):289–299. doi: 10.1016/1043-6618(94)80009-x. [DOI] [PubMed] [Google Scholar]
- Plotkowski M. C., Chevillard M., Pierrot D., Altemayer D., Zahm J. M., Colliot G., Puchelle E. Differential adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells in primary culture. J Clin Invest. 1991 Jun;87(6):2018–2028. doi: 10.1172/JCI115231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riegels-Nielsen P., Espersen F., Hölmich L. R., Frimodt-Møller N. Collagen with gentamicin for prophylaxis of postoperative infection. Staphylococcus aureus osteomyelitis studied in rabbits. Acta Orthop Scand. 1995 Feb;66(1):69–72. doi: 10.3109/17453679508994644. [DOI] [PubMed] [Google Scholar]
- Schadow K. H., Simpson W. A., Christensen G. D. Characteristics of adherence to plastic tissue culture plates of coagulase-negative staphylococci exposed to subinhibitory concentrations of antimicrobial agents. J Infect Dis. 1988 Jan;157(1):71–77. doi: 10.1093/infdis/157.1.71. [DOI] [PubMed] [Google Scholar]
- Sexton M., Reen D. J. Characterization of antibody-mediated inhibition of Pseudomonas aeruginosa adhesion to epithelial cells. Infect Immun. 1992 Aug;60(8):3332–3338. doi: 10.1128/iai.60.8.3332-3338.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sixl F., Galla H. J. Polymyxin interaction with negatively charged lipid bilayer membranes and the competitive effect of Ca2+. Biochim Biophys Acta. 1981 May 20;643(3):626–635. doi: 10.1016/0005-2736(81)90358-8. [DOI] [PubMed] [Google Scholar]
- Umemoto T., Namikawa I. Binding of host-associated treponeme proteins to collagens and laminin: a possible mechanism of spirochetal adherence to host tissues. Microbiol Immunol. 1994;38(8):655–663. doi: 10.1111/j.1348-0421.1994.tb01836.x. [DOI] [PubMed] [Google Scholar]
- Westerlund B., Korhonen T. K. Bacterial proteins binding to the mammalian extracellular matrix. Mol Microbiol. 1993 Aug;9(4):687–694. doi: 10.1111/j.1365-2958.1993.tb01729.x. [DOI] [PubMed] [Google Scholar]
- Zhang Q., Young T. F., Ross R. F. Microtiter plate adherence assay and receptor analogs for Mycoplasma hyopneumoniae. Infect Immun. 1994 May;62(5):1616–1622. doi: 10.1128/iai.62.5.1616-1622.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]