Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Dec;39(12):2671–2677. doi: 10.1128/aac.39.12.2671

Antimalarial dyes revisited: xanthenes, azines, oxazines, and thiazines.

J L Vennerstrom 1, M T Makler 1, C K Angerhofer 1, J A Williams 1
PMCID: PMC163010  PMID: 8593000

Abstract

In 1891 Guttmann and Ehrlich (P. Guttmann and P. Ehrlich, Berlin Klin. Wochenschr. 28:953-956, 1891) were the first to report the antimalarial properties of a synthetic, rather than a natural, material when they described the clinical cure of two patients after oral administration of a thiazine dye, methylene blue. Since that time, sporadic reports of the antimalarial properties of several xanthene and azine dyes related to methylene blue have been noted. We report here the results from a reexamination of the antimalarial properties of methylene blue. Janus green B, and three rhodamine dyes and disclose new antimalarial data for 16 commercially available structural analogs of these dyes. The 50% inhibitory concentrations for the chloroquine-susceptible D6 clone and SN isolate and the chloroquine-resistant W2 clone of Plasmodium falciparum were determined by the recently described parasite lactate dehydrogenase enzyme assay. No cross-resistance to chloroquine was observed for any of the dyes. For the 21 dyes tested, no correlation was observed between antimalarial activity and cytotoxicity against KB cells. No correlation between log P (where P is the octanol/water partition coefficient) or relative catalyst efficiency for glucose oxidation and antimalarial activity or cytotoxicity was observed for the dyes as a whole or for the thiazine dyes. The thiazine dyes were the most uniformly potent structural class tested, and among the dyes in this class, methylene blue was notable for both its high antimalarial potency and selectivity.

Full Text

The Full Text of this article is available as a PDF (248.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison R. T., Garratt N. J. Solvent systems for thin layer chromatography of biological dyes. Med Lab Sci. 1989 Apr;46(2):113–119. [PubMed] [Google Scholar]
  2. Atamna H., Pascarmona G., Ginsburg H. Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites. Mol Biochem Parasitol. 1994 Sep;67(1):79–89. doi: 10.1016/0166-6851(94)90098-1. [DOI] [PubMed] [Google Scholar]
  3. BRENNER S. Supravital staining of mitochondria with phenosafranin dyes. Biochim Biophys Acta. 1953 Aug;11(4):480–486. doi: 10.1016/0006-3002(53)90085-7. [DOI] [PubMed] [Google Scholar]
  4. Barbosa P., Peters T. M. The effects of vital dyes on living organisms with special reference to methylene blue and neutral red. Histochem J. 1971 Jan;3(1):71–93. doi: 10.1007/BF01686508. [DOI] [PubMed] [Google Scholar]
  5. Barnes M. G., Polet H. The influence of methylene blue on the pentose phosphate pathway in erythrocytes of monkeys infected with Plasmodium knowlesi. J Lab Clin Med. 1969 Jul;74(1):1–11. [PubMed] [Google Scholar]
  6. Basco L. K., Le Bras J. In vitro activity of mitochondrial ATP synthetase inhibitors against Plasmodium falciparum. J Eukaryot Microbiol. 1994 May-Jun;41(3):179–183. doi: 10.1111/j.1550-7408.1994.tb01493.x. [DOI] [PubMed] [Google Scholar]
  7. Deslauriers R., Butler K., Smith I. C. Oxidant stress in malaria as probed by stable nitroxide radicals in erythrocytes infected with Plasmodium berghei. The effects of primaquine and chloroquine. Biochim Biophys Acta. 1987 Dec 10;931(3):267–275. doi: 10.1016/0167-4889(87)90216-3. [DOI] [PubMed] [Google Scholar]
  8. DiSanto A. R., Wagner J. G. Pharmacokinetics of highly ionized drugs. 3. Methylene blue--blood levels in the dog and tissue levels in the rat following intravenous administration. J Pharm Sci. 1972 Jul;61(7):1090–1094. doi: 10.1002/jps.2600610711. [DOI] [PubMed] [Google Scholar]
  9. DiSanto A. R., Wagner J. G. Pharmacokinetics of highly ionized drugs. II. Methylene blue--absorption, metabolism, and excretion in man and dog after oral administration. J Pharm Sci. 1972 Jul;61(7):1086–1090. doi: 10.1002/jps.2600610710. [DOI] [PubMed] [Google Scholar]
  10. Divo A. A., Geary T. G., Jensen J. B., Ginsburg H. The mitochondrion of Plasmodium falciparum visualized by rhodamine 123 fluorescence. J Protozool. 1985 Aug;32(3):442–446. doi: 10.1111/j.1550-7408.1985.tb04041.x. [DOI] [PubMed] [Google Scholar]
  11. Divo A. A., Geary T. G., Jensen J. B. Oxygen- and time-dependent effects of antibiotics and selected mitochondrial inhibitors on Plasmodium falciparum in culture. Antimicrob Agents Chemother. 1985 Jan;27(1):21–27. doi: 10.1128/aac.27.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ginsburg H., Divo A. A., Geary T. G., Boland M. T., Jensen J. B. Effects of mitochondrial inhibitors on intraerythrocytic Plasmodium falciparum in in vitro cultures. J Protozool. 1986 Feb;33(1):121–125. doi: 10.1111/j.1550-7408.1986.tb05570.x. [DOI] [PubMed] [Google Scholar]
  13. Gluzman I. Y., Schlesinger P. H., Krogstad D. J. Inoculum effect with chloroquine and Plasmodium falciparum. Antimicrob Agents Chemother. 1987 Jan;31(1):32–36. doi: 10.1128/aac.31.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Izumo A., Tanabe K. Inhibition of in vitro growth of Plasmodium falciparum by a brief exposure to the cationic rhodamine dyes. Ann Trop Med Parasitol. 1986 Jun;80(3):299–305. doi: 10.1080/00034983.1986.11812020. [DOI] [PubMed] [Google Scholar]
  15. Johnson L. V., Walsh M. L., Chen L. B. Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A. 1980 Feb;77(2):990–994. doi: 10.1073/pnas.77.2.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kato M., Izumo A., Tanabe K. Vital staining of Plasmodium falciparum with cationic fluorescent rhodamine dyes. J Parasitol. 1987 Oct;73(5):1058–1059. [PubMed] [Google Scholar]
  17. Kato M., Tanabe K., Miki A., Ichimori K., Waki S. Membrane potential of Plasmodium falciparum gametocytes monitored with rhodamine 123. FEMS Microbiol Lett. 1990 Jun 1;57(3):283–288. doi: 10.1016/0378-1097(90)90081-z. [DOI] [PubMed] [Google Scholar]
  18. Kristiansen J. E. Dyes, antipsychotic drugs, and antimicrobial activity. Fragments of a development, with special reference to the influence of Paul Ehrlich. Dan Med Bull. 1989 Apr;36(2):178–185. [PubMed] [Google Scholar]
  19. Krogstad D. J., Schlesinger P. H., Gluzman I. Y. Antimalarials increase vesicle pH in Plasmodium falciparum. J Cell Biol. 1985 Dec;101(6):2302–2309. doi: 10.1083/jcb.101.6.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lampidis T. J., Castello C., del Giglio A., Pressman B. C., Viallet P., Trevorrow K. W., Valet G. K., Tapiero H., Savaraj N. Relevance of the chemical charge of rhodamine dyes to multiple drug resistance. Biochem Pharmacol. 1989 Dec 1;38(23):4267–4271. doi: 10.1016/0006-2952(89)90525-x. [DOI] [PubMed] [Google Scholar]
  21. Li A., Yalkowsky S. H. Solubility of organic solutes in ethanol/water mixtures. J Pharm Sci. 1994 Dec;83(12):1735–1740. doi: 10.1002/jps.2600831217. [DOI] [PubMed] [Google Scholar]
  22. Likhitwitayawuid K., Angerhofer C. K., Cordell G. A., Pezzuto J. M., Ruangrungsi N. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Stephania erecta. J Nat Prod. 1993 Jan;56(1):30–38. doi: 10.1021/np50091a005. [DOI] [PubMed] [Google Scholar]
  23. Makler M. T., Hinrichs D. J. Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. Am J Trop Med Hyg. 1993 Feb;48(2):205–210. doi: 10.4269/ajtmh.1993.48.205. [DOI] [PubMed] [Google Scholar]
  24. Makler M. T., Ries J. M., Williams J. A., Bancroft J. E., Piper R. C., Gibbins B. L., Hinrichs D. J. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg. 1993 Jun;48(6):739–741. doi: 10.4269/ajtmh.1993.48.739. [DOI] [PubMed] [Google Scholar]
  25. Metz E. N., Balcerzak P., Sagone A. L., Jr Mechanisms of methylene blue stimulation of the hexose monophosphate shunt in erythrocytes. J Clin Invest. 1976 Oct;58(4):797–802. doi: 10.1172/JCI108531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Motohashi N., Mitscher L. A., Meyer R. Potential antitumor phenoxazines. Med Res Rev. 1991 May;11(3):239–294. doi: 10.1002/med.2610110302. [DOI] [PubMed] [Google Scholar]
  27. Oduola A. M., Weatherly N. F., Bowdre J. H., Desjardins R. E. Plasmodium falciparum: cloning by single-erythrocyte micromanipulation and heterogeneity in vitro. Exp Parasitol. 1988 Jun;66(1):86–95. doi: 10.1016/0014-4894(88)90053-7. [DOI] [PubMed] [Google Scholar]
  28. Pottier R., Bonneau R., Joussot-Dubien J. pH dependence of singlet oxygen production in aqueous solutions using toluidine blue as a photosensitizer. Photochem Photobiol. 1975 Jul-Aug;22(1-2):59–61. doi: 10.1111/j.1751-1097.1975.tb06722.x. [DOI] [PubMed] [Google Scholar]
  29. Public Health Weekly Reports for JUNE 5, 1925. Public Health Rep. 1925 Jun 5;40(23):1131–1234. [PMC free article] [PubMed] [Google Scholar]
  30. Shakespeare P. G., Trigg P. I., Kyd S. I., Tappenden L. Glucose metabolism in the simian malaria parasite Plasmodium knowlesi: activities of the glycolytic and pentose phosphate pathways during the intraerythrocytic cycle. Ann Trop Med Parasitol. 1979 Oct;73(5):407–415. doi: 10.1080/00034983.1979.11687280. [DOI] [PubMed] [Google Scholar]
  31. Skehan P., Storeng R., Scudiero D., Monks A., McMahon J., Vistica D., Warren J. T., Bokesch H., Kenney S., Boyd M. R. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990 Jul 4;82(13):1107–1112. doi: 10.1093/jnci/82.13.1107. [DOI] [PubMed] [Google Scholar]
  32. THURSTON J. P. The chemotherapy of Plasmodium berghei. I. Resistance to drugs. Parasitology. 1953 Nov;43(3-4):246–252. doi: 10.1017/s0031182000018618. [DOI] [PubMed] [Google Scholar]
  33. Touitou E., Fisher P. Prevention of molecular self-association by sodium salicylate: effect on methylene blue. J Pharm Sci. 1986 Apr;75(4):384–386. doi: 10.1002/jps.2600750413. [DOI] [PubMed] [Google Scholar]
  34. Tuite E. M., Kelly J. M. Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J Photochem Photobiol B. 1993 Dec;21(2-3):103–124. doi: 10.1016/1011-1344(93)80173-7. [DOI] [PubMed] [Google Scholar]
  35. Wagner U. A., Maier W. A. Nile blue as a stain for exoerythrocytic forms of Plasmodium yoelii. Trans R Soc Trop Med Hyg. 1989 Jan-Feb;83(1):70–70. doi: 10.1016/0035-9203(89)90709-8. [DOI] [PubMed] [Google Scholar]
  36. Yayon A., Cabantchik Z. I., Ginsburg H. Identification of the acidic compartment of Plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug chloroquine. EMBO J. 1984 Nov;3(11):2695–2700. doi: 10.1002/j.1460-2075.1984.tb02195.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES