Abstract
The antimicrobial susceptibilities of Legionella pneumophila isolates grown either in U937 human monocytic cells or in Acanthamoeba polyphaga were studied after release from the host cells without further subculture. Time-survival studies showed that exposure of L. pneumophila cells, gown exclusively in vitro, to 5 micrograms of rifampin per ml resulted in at least 99% killing after 6 h and no detectable survivors at 24 h. Similar rates of killing were observed for in vitro-grown cells tested by exposure to ciprofloxacin. Conversely, time-survival studies revealed that macrophage-grown and amoeba-grown cells were ca. 1,000-fold more resistant to the activities of both drugs. Macrophage-grown cells treated with 5 micrograms of rifampin per ml showed 70 and 62% survival after 6 and 24 h, respectively. Intracellularly grown legionellae were also highly resistant to erythromycin (8 microgram/ml). After 24 h of exposure to the drug, there was 70 and 60% survival for amoeba-grown and macrophage-grown legionellae, respectively, whereas in vitro-grown cells showed a 2-log10 reduction in viable count. when intracellularly grown L. pneumophila cells were subcultured in broth for 48 h, they reverted to the phenotype characteristic of in vitro growth. Morphologically, the cells were larger than their intracellularly grown counterparts and resistance characteristics were lost. The susceptibilities of the subcultured cells to all three drugs were similar to those of Legionella cells grown exclusively in vitro. In view of these findings, the successful treatment of Legionnaires disease may be related as much to the resistance phenotype induced by intramacrophage growth as to the ability of the antibiotic to enter phagocytic cells.
Full Text
The Full Text of this article is available as a PDF (210.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abu Kwaik Y., Eisenstein B. I., Engleberg N. C. Phenotypic modulation by Legionella pneumophila upon infection of macrophages. Infect Immun. 1993 Apr;61(4):1320–1329. doi: 10.1128/iai.61.4.1320-1329.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anwar H., Dasgupta M. K., Costerton J. W. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob Agents Chemother. 1990 Nov;34(11):2043–2046. doi: 10.1128/aac.34.11.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker J., Brown M. R., Collier P. J., Farrell I., Gilbert P. Relationship between Legionella pneumophila and Acanthamoeba polyphaga: physiological status and susceptibility to chemical inactivation. Appl Environ Microbiol. 1992 Aug;58(8):2420–2425. doi: 10.1128/aem.58.8.2420-2425.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker J., Brown M. R. Speculations on the influence of infecting phenotype on virulence and antibiotic susceptibility of Legionella pneumophila. J Antimicrob Chemother. 1995 Jul;36(1):7–21. doi: 10.1093/jac/36.1.7. [DOI] [PubMed] [Google Scholar]
- Barker J., Brown M. R. Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology. 1994 Jun;140(Pt 6):1253–1259. doi: 10.1099/00221287-140-6-1253. [DOI] [PubMed] [Google Scholar]
- Barker J., Farrell I. D., Hutchison J. G. Factors affecting growth of Legionella pneumophila in liquid media. J Med Microbiol. 1986 Sep;22(2):97–100. doi: 10.1099/00222615-22-2-97. [DOI] [PubMed] [Google Scholar]
- Barker J., Farrell I. D. The effect of charcoal on MICs for Legionella. J Antimicrob Chemother. 1986 Jan;17(1):127–127. doi: 10.1093/jac/17.1.127. [DOI] [PubMed] [Google Scholar]
- Barker J., Lambert P. A., Brown M. R. Influence of intra-amoebic and other growth conditions on the surface properties of Legionella pneumophila. Infect Immun. 1993 Aug;61(8):3503–3510. doi: 10.1128/iai.61.8.3503-3510.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker J., Till D. H. Survival of Legionella pneumophila. Med Lab Sci. 1986 Oct;43(4):388–389. [PubMed] [Google Scholar]
- Brown M. R., Collier P. J., Gilbert P. Influence of growth rate on susceptibility to antimicrobial agents: modification of the cell envelope and batch and continuous culture studies. Antimicrob Agents Chemother. 1990 Sep;34(9):1623–1628. doi: 10.1128/aac.34.9.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. R. Nutrient depletion and antibiotic susceptibility. J Antimicrob Chemother. 1977 May;3(3):198–201. doi: 10.1093/jac/3.3.198. [DOI] [PubMed] [Google Scholar]
- Brown M. R., Williams P. Influence of substrate limitation and growth phase on sensitivity to antimicrobial agents. J Antimicrob Chemother. 1985 Jan;15 (Suppl A):7–14. doi: 10.1093/jac/15.suppl_a.7. [DOI] [PubMed] [Google Scholar]
- Brown M. R., Williams P. The influence of environment on envelope properties affecting survival of bacteria in infections. Annu Rev Microbiol. 1985;39:527–556. doi: 10.1146/annurev.mi.39.100185.002523. [DOI] [PubMed] [Google Scholar]
- Byrd T. F., Horwitz M. A. Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J Clin Invest. 1989 May;83(5):1457–1465. doi: 10.1172/JCI114038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byrd T. F., Horwitz M. A. Lactoferrin inhibits or promotes Legionella pneumophila intracellular multiplication in nonactivated and interferon gamma-activated human monocytes depending upon its degree of iron saturation. Iron-lactoferrin and nonphysiologic iron chelates reverse monocyte activation against Legionella pneumophila. J Clin Invest. 1991 Oct;88(4):1103–1112. doi: 10.1172/JCI115409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chuard C., Lucet J. C., Rohner P., Herrmann M., Auckenthaler R., Waldvogel F. A., Lew D. P. Resistance of Staphylococcus aureus recovered from infected foreign body in vivo to killing by antimicrobials. J Infect Dis. 1991 Jun;163(6):1369–1373. [PubMed] [Google Scholar]
- Cirillo J. D., Falkow S., Tompkins L. S. Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect Immun. 1994 Aug;62(8):3254–3261. doi: 10.1128/iai.62.8.3254-3261.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelstein P. H., Edelstein M. A. In vitro extracellular and intracellular activities of clavulanic acid and those of piperacillin and ceftriaxone alone and in combination with tazobactam against clinical isolates of Legionella species. Antimicrob Agents Chemother. 1994 Feb;38(2):200–204. doi: 10.1128/aac.38.2.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelstein P. H., Edelstein M. A. WIN 57273 is bactericidal for Legionella pneumophila grown in alveolar macrophages. Antimicrob Agents Chemother. 1989 Dec;33(12):2132–2136. doi: 10.1128/aac.33.12.2132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelstein P. H. Improved semiselective medium for isolation of Legionella pneumophila from contaminated clinical and environmental specimens. J Clin Microbiol. 1981 Sep;14(3):298–303. doi: 10.1128/jcm.14.3.298-303.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eng R. H., Padberg F. T., Smith S. M., Tan E. N., Cherubin C. E. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Chemother. 1991 Sep;35(9):1824–1828. doi: 10.1128/aac.35.9.1824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzgeorge R. B. The effect of antibiotics on the growth of Legionella pneumophila in guinea-pig alveolar phagocytes infected in vivo by an aerosol. J Infect. 1985 May;10(3):189–193. doi: 10.1016/s0163-4453(85)92413-2. [DOI] [PubMed] [Google Scholar]
- Gebran S. J., Newton C., Yamamoto Y., Widen R., Klein T. W., Friedman H. Macrophage permissiveness for Legionella pneumophila growth modulated by iron. Infect Immun. 1994 Feb;62(2):564–568. doi: 10.1128/iai.62.2.564-568.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gebran S. J., Yamamoto Y., Newton C., Klein T. W., Friedman H. Inhibition of Legionella pneumophila growth by gamma interferon in permissive A/J mouse macrophages: role of reactive oxygen species, nitric oxide, tryptophan, and iron(III). Infect Immun. 1994 Aug;62(8):3197–3205. doi: 10.1128/iai.62.8.3197-3205.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert P., Collier P. J., Brown M. R. Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother. 1990 Oct;34(10):1865–1868. doi: 10.1128/aac.34.10.1865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horwitz M. A., Silverstein S. C. Intracellular multiplication of Legionnaires' disease bacteria (Legionella pneumophila) in human monocytes is reversibly inhibited by erythromycin and rifampin. J Clin Invest. 1983 Jan;71(1):15–26. doi: 10.1172/JCI110744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubbard R. B., Mathur R. M., MacFarlane J. T. Severe community-acquired legionella pneumonia: treatment, complications and outcome. Q J Med. 1993 May;86(5):327–332. [PubMed] [Google Scholar]
- Husmann L. K., Johnson W. Adherence of Legionella pneumophila to guinea pig peritoneal macrophages, J774 mouse macrophages, and undifferentiated U937 human monocytes: role of Fc and complement receptors. Infect Immun. 1992 Dec;60(12):5212–5218. doi: 10.1128/iai.60.12.5212-5218.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaprelyants A. S., Gottschal J. C., Kell D. B. Dormancy in non-sporulating bacteria. FEMS Microbiol Rev. 1993 Apr;10(3-4):271–285. doi: 10.1111/j.1574-6968.1993.tb05871.x. [DOI] [PubMed] [Google Scholar]
- King C. H., Fields B. S., Shotts E. B., Jr, White E. H. Effects of cytochalasin D and methylamine on intracellular growth of Legionella pneumophila in amoebae and human monocyte-like cells. Infect Immun. 1991 Mar;59(3):758–763. doi: 10.1128/iai.59.3.758-763.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kjelleberg S., Albertson N., Flärdh K., Holmquist L., Jouper-Jaan A., Marouga R., Ostling J., Svenblad B., Weichart D. How do non-differentiating bacteria adapt to starvation? Antonie Van Leeuwenhoek. 1993;63(3-4):333–341. doi: 10.1007/BF00871228. [DOI] [PubMed] [Google Scholar]
- Moffat J. F., Tompkins L. S. A quantitative model of intracellular growth of Legionella pneumophila in Acanthamoeba castellanii. Infect Immun. 1992 Jan;60(1):296–301. doi: 10.1128/iai.60.1.296-301.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearlman E., Jiwa A. H., Engleberg N. C., Eisenstein B. I. Growth of Legionella pneumophila in a human macrophage-like (U937) cell line. Microb Pathog. 1988 Aug;5(2):87–95. doi: 10.1016/0882-4010(88)90011-3. [DOI] [PubMed] [Google Scholar]
- Pine L., George J. R., Reeves M. W., Harrell W. K. Development of a chemically defined liquid medium for growth of Legionella pneumophila. J Clin Microbiol. 1979 May;9(5):615–626. doi: 10.1128/jcm.9.5.615-626.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radzun H. J., Parwaresch M. R., Sundström C., Nilsson K., Eissner M. Monocytic origin of the human hematopoietic cell line U-937 and its convertibility to macrophages evidenced by isoenzyme mapping. Int J Cancer. 1983 Feb 15;31(2):181–186. doi: 10.1002/ijc.2910310208. [DOI] [PubMed] [Google Scholar]
- Rowbotham T. J. Current views on the relationships between amoebae, legionellae and man. Isr J Med Sci. 1986 Sep;22(9):678–689. [PubMed] [Google Scholar]
- Rowbotham T. J. Isolation of Legionella pneumophila from clinical specimens via amoebae, and the interaction of those and other isolates with amoebae. J Clin Pathol. 1983 Sep;36(9):978–986. doi: 10.1136/jcp.36.9.978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheth B., Dransfield I., Partridge L. J., Barker M. D., Burton D. R. Dibutyryl cyclic AMP stimulation of a monocyte-like cell line, U937: a model for monocyte chemotaxis and Fc receptor-related functions. Immunology. 1988 Mar;63(3):483–490. [PMC free article] [PubMed] [Google Scholar]
- Verbist L., Gyselen A. Antituberculous activity of rifampin in vitro and in vivo and the concentrations attained in human blood. Am Rev Respir Dis. 1968 Dec;98(6):923–932. doi: 10.1164/arrd.1968.98.6.923. [DOI] [PubMed] [Google Scholar]
- Vildé J. L., Dournon E., Rajagopalan P. Inhibition of Legionella pneumophila multiplication within human macrophages by antimicrobial agents. Antimicrob Agents Chemother. 1986 Nov;30(5):743–748. doi: 10.1128/aac.30.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weeratna R., Stamler D. A., Edelstein P. H., Ripley M., Marrie T., Hoskin D., Hoffman P. S. Human and guinea pig immune responses to Legionella pneumophila protein antigens OmpS and Hsp60. Infect Immun. 1994 Aug;62(8):3454–3462. doi: 10.1128/iai.62.8.3454-3462.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]