Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Dec;39(12):2742–2748. doi: 10.1128/aac.39.12.2742

The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria.

L Zhai 1, J Blom 1, M Chen 1, S B Christensen 1, A Kharazmi 1
PMCID: PMC163022  PMID: 8593012

Abstract

Our previous studies have shown that licochalcone A, an oxygenated chalcone, has antileishmanial (M. Chen, S.B. Christensen, J. Blom, E. Lemmich, L. Nadelmann, K. Fich, T.G. Theander, and A. Kharazmi, Antimicrob, Agents Chemother. 37:2550-2556, 1993; M. Chen, S.B. Christensen, T.G. Theander, and A. Khrazmi, Antimicrob. Agents Chemother. 38:1339-1344, 1994) and antimalarial (M. Chen, T.G. Theander, S.B. Christensen, L. Hviid, L. Zhai, and A. Kaharazmi, Antimicrob. Agents Chemother. 38:1470-1475, 1994) activities. We have observed that licochalcone A alters the ultrastructure of the mitochondria of Leishmania promastigotes (Chen et al., Antimicrob. Agents Chemother. 37:2550-2556, 1993). The present study was designed to examine this observation further and investigate the mechanism of action of antileishmanial activity of licochalcone A. Electron microscopic studies showed that licochalcone A altered the ultrastructure of Leishmania major promastigote and amastigote mitochondria in a concentration-dependent manner without damaging the organelles of macrophages or the phagocytic function of these cells. Studies on the function of the parasite mitochondria showed that licochalcone A inhibited the respiration of the parasite by the parasites. Moreover, licochalcone A inhibited the activity of the parasite mitochondrial dehydrogenase. The inhibition of the activity of the parasite mitochondrial enzyme correlated well with the changes in the ultrastructure of the mitochondria shown by electron microscopy. These findings demonstrate that licochalcone A alters the ultrastructure and function of the mitochondria of Leishmania parasites.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashford R. W., Desjeux P., Deraadt P. Estimation of population at risk of infection and number of cases of Leishmaniasis. Parasitol Today. 1992 Mar;8(3):104–105. doi: 10.1016/0169-4758(92)90249-2. [DOI] [PubMed] [Google Scholar]
  2. Berg K., Zhai L., Chen M., Kharazmi A., Owen T. C. The use of a water-soluble formazan complex to quantitate the cell number and mitochondrial function of Leishmania major promastigotes. Parasitol Res. 1994;80(3):235–239. doi: 10.1007/BF00932680. [DOI] [PubMed] [Google Scholar]
  3. Berman J. D., Edwards N., King M., Grogl M. Biochemistry of Pentostam resistant Leishmania. Am J Trop Med Hyg. 1989 Feb;40(2):159–164. doi: 10.4269/ajtmh.1989.40.159. [DOI] [PubMed] [Google Scholar]
  4. Berman J. D., Gallalee J. V., Best J. M. Sodium stibogluconate (Pentostam) inhibition of glucose catabolism via the glycolytic pathway, and fatty acid beta-oxidation in Leishmania mexicana amastigotes. Biochem Pharmacol. 1987 Jan 15;36(2):197–201. doi: 10.1016/0006-2952(87)90689-7. [DOI] [PubMed] [Google Scholar]
  5. Chen M., Christensen S. B., Blom J., Lemmich E., Nadelmann L., Fich K., Theander T. G., Kharazmi A. Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania. Antimicrob Agents Chemother. 1993 Dec;37(12):2550–2556. doi: 10.1128/aac.37.12.2550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen M., Christensen S. B., Theander T. G., Kharazmi A. Antileishmanial activity of licochalcone A in mice infected with Leishmania major and in hamsters infected with Leishmania donovani. Antimicrob Agents Chemother. 1994 Jun;38(6):1339–1344. doi: 10.1128/aac.38.6.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen M., Theander T. G., Christensen S. B., Hviid L., Zhai L., Kharazmi A. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother. 1994 Jul;38(7):1470–1475. doi: 10.1128/aac.38.7.1470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cory A. H., Owen T. C., Barltrop J. A., Cory J. G. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 1991 Jul;3(7):207–212. doi: 10.3727/095535491820873191. [DOI] [PubMed] [Google Scholar]
  9. Croft S. L., Brazil R. P. Effect of pentamidine isethionate on the ultrastructure and morphology of Leishmania mexicana amazonensis in vitro. Ann Trop Med Parasitol. 1982 Feb;76(1):37–43. doi: 10.1080/00034983.1982.11687502. [DOI] [PubMed] [Google Scholar]
  10. Huet O., Petit J. M., Ratinaud M. H., Julien R. NADH-dependent dehydrogenase activity estimation by flow cytometric analysis of 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Cytometry. 1992;13(5):532–539. doi: 10.1002/cyto.990130513. [DOI] [PubMed] [Google Scholar]
  11. Ittarat I., Asawamahasakda W., Meshnick S. R. The effects of antimalarials on the Plasmodium falciparum dihydroorotate dehydrogenase. Exp Parasitol. 1994 Aug;79(1):50–56. doi: 10.1006/expr.1994.1058. [DOI] [PubMed] [Google Scholar]
  12. Kharazmi A., Høiby N., Döring G., Valerius N. H. Pseudomonas aeruginosa exoproteases inhibit human neutrophil chemiluminescence. Infect Immun. 1984 Jun;44(3):587–591. doi: 10.1128/iai.44.3.587-591.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lippold H. J. Quantitative succinic dehydrogenases histochemistry. A comparison of different tetrazolium salts. Histochemistry. 1982;76(3):381–405. doi: 10.1007/BF00543959. [DOI] [PubMed] [Google Scholar]
  14. Majumdar U. K., Gupta M., Chowdhury S., Saha A. K. Antileishmanial activities of mycotoxin MT 81 and its derivatives. Indian J Exp Biol. 1993 Nov;31(11):888–890. [PubMed] [Google Scholar]
  15. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  16. Nielsen H. Antibiotics and human monocyte function. II. Phagocytosis and oxidative metabolism. APMIS. 1989 May;97(5):447–451. doi: 10.1111/j.1699-0463.1989.tb00814.x. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES