Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Dec;39(12):2770–2773. doi: 10.1128/aac.39.12.2770

Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae.

T S Lucier 1, K Heitzman 1, S K Liu 1, P C Hu 1
PMCID: PMC163027  PMID: 8593017

Abstract

Erythromycin is the drug of choice for treatment of Mycoplasma pneumoniae infections due to its susceptibility to low levels of this antibiotic. After exposure of susceptible strains to erythromycin in vitro and in vivo, mutants resistant to erythromycin and other macrolides were isolated. Their phenotypes have been characterized, but the genetic basis for resistance has never been determined. We isolated two resistant mutants (M129-ER1 and M129-ER2) by growing M. pneumoniae M129 on agar containing different amounts of erythromycin. In broth dilution tests both strains displayed resistance to high levels of several macrolide-lincosamide-streptogramin B (MLS) antibiotics. In binding studies, ribosomes isolated from the resistant strains exhibited significantly lower affinity for [14C]erythromycin than did ribosomes from the M129 parent strain. Sequencing of DNA amplified from the region of the 2S rRNA gene encoding domain V revealed an A-to-G transition in the central loop at position 2063 of M129-ER1 and a similar A-to-G transition at position 2064 in M129-ER2. Transitions at homologous locations in the 23S rRNA from other organisms have been shown to result in resistance to MLS antibiotics. Thus, MLS-like resistance can occur in M. pneumoniae as the result of point mutations in the 23S rRNA gene which reduce the affinity of these antibiotics for the ribosome. Since they involve only single-base changes, development of resistance to erythromycin in vivo by these mechanisms could be relatively frequent event.

Full Text

The Full Text of this article is available as a PDF (175.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai S., Gohara Y., Kuwano K., Kawashima T. Antimycoplasmal activities of new quinolones, tetracyclines, and macrolides against Mycoplasma pneumoniae. Antimicrob Agents Chemother. 1992 Jun;36(6):1322–1324. doi: 10.1128/aac.36.6.1322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arthur M., Brisson-Noël A., Courvalin P. Origin and evolution of genes specifying resistance to macrolide, lincosamide and streptogramin antibiotics: data and hypotheses. J Antimicrob Chemother. 1987 Dec;20(6):783–802. doi: 10.1093/jac/20.6.783. [DOI] [PubMed] [Google Scholar]
  3. Bébéar C., Dupon M., Renaudin H., de Barbeyrac B. Potential improvements in therapeutic options for mycoplasmal respiratory infections. Clin Infect Dis. 1993 Aug;17 (Suppl 1):S202–S207. doi: 10.1093/clinids/17.supplement_1.s202. [DOI] [PubMed] [Google Scholar]
  4. Cassell G. H., Cole B. C. Mycoplasmas as agents of human disease. N Engl J Med. 1981 Jan 8;304(2):80–89. doi: 10.1056/NEJM198101083040204. [DOI] [PubMed] [Google Scholar]
  5. Cassell G. H., Waites K. B., Pate M. S., Canupp K. C., Duffy L. B. Comparative susceptibility of Mycoplasma pneumoniae to erythromycin, ciprofloxacin, and lomefloxacin. Diagn Microbiol Infect Dis. 1989 Sep-Oct;12(5):433–435. doi: 10.1016/0732-8893(89)90115-6. [DOI] [PubMed] [Google Scholar]
  6. Cseplö A., Etzold T., Schell J., Schreier P. H. Point mutations in the 23 S rRNA genes of four lincomycin resistant Nicotiana plumbaginifolia mutants could provide new selectable markers for chloroplast transformation. Mol Gen Genet. 1988 Oct;214(2):295–299. doi: 10.1007/BF00337724. [DOI] [PubMed] [Google Scholar]
  7. Denny F. W., Clyde W. A., Jr, Glezen W. P. Mycoplasma pneumoniae disease: clinical spectrum, pathophysiology, epidemiology, and control. J Infect Dis. 1971 Jan;123(1):74–92. doi: 10.1093/infdis/123.1.74. [DOI] [PubMed] [Google Scholar]
  8. Douthwaite S., Aagaard C. Erythromycin binding is reduced in ribosomes with conformational alterations in the 23 S rRNA peptidyl transferase loop. J Mol Biol. 1993 Aug 5;232(3):725–731. doi: 10.1006/jmbi.1993.1426. [DOI] [PubMed] [Google Scholar]
  9. Douthwaite S. Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomal RNA. Nucleic Acids Res. 1992 Sep 25;20(18):4717–4720. doi: 10.1093/nar/20.18.4717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldman R. C., Kadam S. K. Binding of novel macrolide structures to macrolides-lincosamides-streptogramin B-resistant ribosomes inhibits protein synthesis and bacterial growth. Antimicrob Agents Chemother. 1989 Jul;33(7):1058–1066. doi: 10.1128/aac.33.7.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gutell R. R., Fox G. E. A compilation of large subunit RNA sequences presented in a structural format. Nucleic Acids Res. 1988;16 (Suppl):r175–r269. doi: 10.1093/nar/16.suppl.r175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Göbel U., Butler G. H., Stanbridge E. J. Comparative analysis of mycoplasma ribosomal RNA operons. Isr J Med Sci. 1984 Sep;20(9):762–764. [PubMed] [Google Scholar]
  13. Harris E. H., Burkhart B. D., Gillham N. W., Boynton J. E. Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics. 1989 Oct;123(2):281–292. doi: 10.1093/genetics/123.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hu P. C., Collier A. M., Baseman J. B. Surface parasitism by Mycoplasma pneumoniae of respiratory epithelium. J Exp Med. 1977 May 1;145(5):1328–1343. doi: 10.1084/jem.145.5.1328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ishida K., Kaku M., Irifune K., Mizukane R., Takemura H., Yoshida R., Tanaka H., Usui T., Suyama N., Tomono K. In vitro and in vivo activities of macrolides against Mycoplasma pneumoniae. Antimicrob Agents Chemother. 1994 Apr;38(4):790–798. doi: 10.1128/aac.38.4.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leclercq R., Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother. 1991 Jul;35(7):1267–1272. doi: 10.1128/aac.35.7.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meier A., Kirschner P., Springer B., Steingrube V. A., Brown B. A., Wallace R. J., Jr, Böttger E. C. Identification of mutations in 23S rRNA gene of clarithromycin-resistant Mycobacterium intracellulare. Antimicrob Agents Chemother. 1994 Feb;38(2):381–384. doi: 10.1128/aac.38.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moazed D., Noller H. F. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie. 1987 Aug;69(8):879–884. doi: 10.1016/0300-9084(87)90215-x. [DOI] [PubMed] [Google Scholar]
  19. Niitu Y., Hasegawa S., Suetake T., Kubota H., Komatsu S., Horikawa M. Resistance of Mycoplasma pneumoniae to erythromycin and other antibiotics. J Pediatr. 1970 Mar;76(3):438–443. doi: 10.1016/s0022-3476(70)80485-1. [DOI] [PubMed] [Google Scholar]
  20. Nitu Y., Hasegawa S., Kubota H. In vitro development of resistance to erythromycin, other macrolide antibiotics, and lincomycin in Mycoplasma pneumoniae. Antimicrob Agents Chemother. 1974 May;5(5):513–519. doi: 10.1128/aac.5.5.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Noller H. F. Structure of ribosomal RNA. Annu Rev Biochem. 1984;53:119–162. doi: 10.1146/annurev.bi.53.070184.001003. [DOI] [PubMed] [Google Scholar]
  22. Palù G., Valisena S., Barile M. F., Meloni G. A. Mechanisms of macrolide resistance in Ureaplasma urealyticum: a study on collection and clinical strains. Eur J Epidemiol. 1989 Jun;5(2):146–153. doi: 10.1007/BF00156820. [DOI] [PubMed] [Google Scholar]
  23. Pardo D., Rosset R. Properties of ribosomes from erythromycin resistant mutants of Escherichia coli. Mol Gen Genet. 1977 Nov 18;156(3):267–271. doi: 10.1007/BF00267181. [DOI] [PubMed] [Google Scholar]
  24. Pernodet J. L., Boccard F., Alegre M. T., Blondelet-Rouault M. H., Guérineau M. Resistance to macrolides, lincosamides and streptogramin type B antibiotics due to a mutation in an rRNA operon of Streptomyces ambofaciens. EMBO J. 1988 Jan;7(1):277–282. doi: 10.1002/j.1460-2075.1988.tb02810.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roberts M. C., Kenny G. E. Conjugal transfer of transposon Tn916 from Streptococcus faecalis to Mycoplasma hominis. J Bacteriol. 1987 Aug;169(8):3836–3839. doi: 10.1128/jb.169.8.3836-3839.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roberts M. C., Kenny G. E. Dissemination of the tetM tetracycline resistance determinant to Ureaplasma urealyticum. Antimicrob Agents Chemother. 1986 Feb;29(2):350–352. doi: 10.1128/aac.29.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sigmund C. D., Ettayebi M., Morgan E. A. Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. Nucleic Acids Res. 1984 Jun 11;12(11):4653–4663. doi: 10.1093/nar/12.11.4653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sigmund C. D., Morgan E. A. Erythromycin resistance due to a mutation in a ribosomal RNA operon of Escherichia coli. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5602–5606. doi: 10.1073/pnas.79.18.5602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Slotkin R. I., Clyde W. A., Jr, Denny F. W. The effect of antibiotics on Mycoplasma pneumoniae in vitro and in vivo. Am J Epidemiol. 1967 Jul;86(1):225–237. doi: 10.1093/oxfordjournals.aje.a120727. [DOI] [PubMed] [Google Scholar]
  30. Smith C. B., Friedewald W. T., Chanock R. M. Shedding of Mycoplasma pneumoniae after tetracycline and erythromycin therapy. N Engl J Med. 1967 May 25;276(21):1172–1175. doi: 10.1056/NEJM196705252762103. [DOI] [PubMed] [Google Scholar]
  31. Sor F., Fukuhara H. Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast. Nucleic Acids Res. 1982 Nov 11;10(21):6571–6577. doi: 10.1093/nar/10.21.6571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stopler T., Branski D. Resistance of Mycoplasma pneumoniae to macrolides, lincomycin and streptogramin B. J Antimicrob Chemother. 1986 Sep;18(3):359–364. doi: 10.1093/jac/18.3.359. [DOI] [PubMed] [Google Scholar]
  33. Stopler T., Gerichter C. B., Branski D. Antibiotic-resistant mutants of Mycoplasma pneumoniae. Isr J Med Sci. 1980 Mar;16(3):169–173. [PubMed] [Google Scholar]
  34. Taylor-Robinson D., Webster A. D., Furr P. M., Asherson G. L. Prolonged persistence of Mycoplasma pneumoniae in a patient with hypogammaglobulinaemia. J Infect. 1980 Jun;2(2):171–175. doi: 10.1016/s0163-4453(80)91284-0. [DOI] [PubMed] [Google Scholar]
  35. Vester B., Garrett R. A. A plasmid-coded and site-directed mutation in Escherichia coli 23S RNA that confers resistance to erythromycin: implications for the mechanism of action of erythromycin. Biochimie. 1987 Aug;69(8):891–900. doi: 10.1016/0300-9084(87)90217-3. [DOI] [PubMed] [Google Scholar]
  36. Weisblum B., Demohn V. Erythromycin-inducible resistance in Staphylococcus aureus: survey of antibiotic classes involved. J Bacteriol. 1969 May;98(2):447–452. doi: 10.1128/jb.98.2.447-452.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995 Mar;39(3):577–585. doi: 10.1128/AAC.39.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES