Abstract
Lipophilic ester prodrugs of 9-(2-phosphonylmethoxyethyl)adenine (PMEA), i.e., bis(pivaloyloxymethyl)-PMEA [bis(POM)-PMEA] and diphenyl-PMEA, have been synthesized in an attempt to increase the oral bioavailability of this broad-spectrum antiviral agent. The antiretroviral efficacy was determined in severe combined immune deficiency (SCID) mice infected with Moloney murine sarcoma virus (MSV). They were treated twice daily for 5 days after infection. Oral treatment with bis(POM)-PMEA at a dose equivalent to 100 or 50 mg of PMEA per kg of body weight per day proved markedly effective in delaying MSV-induced tumor formation and death of the mice. Oral bis(POM)-PMEA afforded anti-MSV efficacy equal to that of subcutaneous PMEA given at equimolar doses. Oral treatment with PMEA or diphenyl-PMEA proved less efficient. Similarly, in mice infected with Friend leukemia virus (FLV), oral treatment with bis(POM)-PMEA at a dose equivalent to 100 or 50 mg of PMEA per kg per day effected a marked inhibition of FLV-induced splenomegaly (87 and 48% inhibition, respectively), the efficacy being equal to that of PMEA given subcutaneously at equivalent doses. Pharmacokinetic experiments with mice showed that the oral bioavailabilities of PMEA following oral gavage of bis(POM)-PMEA, diphenyl-PMEA, or PMEA (at a dose equivalent to 50 mg of PMEA per kg) were 53,3, and 16%, respectively. These data were calculated from the levels of free PMEA in plasma. Also, the recoveries of free PMEA in the urine upon oral administration of bis(POM)-PMEA, diphenyl-PMEA, or PMEA (at a dose equivalent to 25 mg of PMEA per kg) were 48, 4, and 7%, respectively. Oral bis(POM)-PMEA was not recovered from plasma, suggesting that it was readily cleaved to free PMEA. In contrast, diphenyl-PMEA was not efficiently cleaved to free PMEA, resulting in a rather low oral bioavailability of PMEA from this prodrug. Bis(POM)-PMEA appears to be an efficient oral prodrug of PMEA that deserves further clinical evaluation in human immunodeficiency virus-infected individuals.
Full Text
The Full Text of this article is available as a PDF (264.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balzarini J., De Clercq E. 5-Phosphoribosyl 1-pyrophosphate synthetase converts the acyclic nucleoside phosphonates 9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and 9-(2-phosphonylmethoxyethyl)adenine directly to their antivirally active diphosphate derivatives. J Biol Chem. 1991 May 15;266(14):8686–8689. [PubMed] [Google Scholar]
- Balzarini J., Hao Z., Herdewijn P., Johns D. G., De Clercq E. Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonylmethoxyethyl)adenine, a potent anti-human immunodeficiency virus compound. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1499–1503. doi: 10.1073/pnas.88.4.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balzarini J., Naesens L., De Clercq E. Anti-retrovirus activity of 9-(2-phosphonylmethoxyethyl)adenine (PMEA) in vivo increases when it is less frequently administered. Int J Cancer. 1990 Aug 15;46(2):337–340. doi: 10.1002/ijc.2910460233. [DOI] [PubMed] [Google Scholar]
- Balzarini J., Naesens L., Herdewijn P., Rosenberg I., Holy A., Pauwels R., Baba M., Johns D. G., De Clercq E. Marked in vivo antiretrovirus activity of 9-(2-phosphonylmethoxyethyl)adenine, a selective anti-human immunodeficiency virus agent. Proc Natl Acad Sci U S A. 1989 Jan;86(1):332–336. doi: 10.1073/pnas.86.1.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balzarini J., Naesens L., Slachmuylders J., Niphuis H., Rosenberg I., Holý A., Schellekens H., De Clercq E. 9-(2-Phosphonylmethoxyethyl)adenine (PMEA) effectively inhibits retrovirus replication in vitro and simian immunodeficiency virus infection in rhesus monkeys. AIDS. 1991 Jan;5(1):21–28. doi: 10.1097/00002030-199101000-00003. [DOI] [PubMed] [Google Scholar]
- Bilello J. A., Bauer G., Dudley M. N., Cole G. A., Drusano G. L. Effect of 2',3'-didehydro-3'-deoxythymidine in an in vitro hollow-fiber pharmacodynamic model system correlates with results of dose-ranging clinical studies. Antimicrob Agents Chemother. 1994 Jun;38(6):1386–1391. doi: 10.1128/aac.38.6.1386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bronson J. J., Ho H. T., De Boeck H., Woods K., Ghazzouli I., Martin J. C., Hitchcock M. J. Biochemical pharmacology of acyclic nucleotide analogues. Ann N Y Acad Sci. 1990;616:398–407. doi: 10.1111/j.1749-6632.1990.tb17859.x. [DOI] [PubMed] [Google Scholar]
- Cundy K. C., Fishback J. A., Shaw J. P., Lee M. L., Soike K. F., Visor G. C., Lee W. A. Oral bioavailability of the antiretroviral agent 9-(2-phosphonylmethoxyethyl)adenine (PMEA) from three formulations of the prodrug bis(pivaloyloxymethyl)-PMEA in fasted male cynomolgus monkeys. Pharm Res. 1994 Jun;11(6):839–843. doi: 10.1023/a:1018925723889. [DOI] [PubMed] [Google Scholar]
- Cundy K. C., Shaw J. P., Lee W. A. Oral, subcutaneous, and intramuscular bioavailabilities of the antiviral nucleotide analog 9-(2-phosphonylmethoxyethyl) adenine in cynomolgus monkeys. Antimicrob Agents Chemother. 1994 Feb;38(2):365–368. doi: 10.1128/aac.38.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Clercq E. Broad-spectrum anti-DNA virus and anti-retrovirus activity of phosphonylmethoxyalkylpurines and -pyrimidines. Biochem Pharmacol. 1991 Aug 8;42(5):963–972. doi: 10.1016/0006-2952(91)90276-b. [DOI] [PubMed] [Google Scholar]
- De Clercq E., Sakuma T., Baba M., Pauwels R., Balzarini J., Rosenberg I., Holý A. Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines. Antiviral Res. 1987 Dec;8(5-6):261–272. doi: 10.1016/s0166-3542(87)80004-9. [DOI] [PubMed] [Google Scholar]
- Egberink H., Borst M., Niphuis H., Balzarini J., Neu H., Schellekens H., De Clercq E., Horzinek M., Koolen M. Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3087–3091. doi: 10.1073/pnas.87.8.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Field H. J., Awan A. R. Effective chemotherapy of equine herpesvirus 1 by phosphonylmethoxyalkyl derivatives of adenine demonstrated in a novel murine model for the disease. Antimicrob Agents Chemother. 1990 May;34(5):709–717. doi: 10.1128/aac.34.5.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gangemi J. D., Cozens R. M., De Clercq E., Balzarini J., Hochkeppel H. K. 9-(2-Phosphonylmethoxyethyl)adenine in the treatment of murine acquired immunodeficiency disease and opportunistic herpes simplex virus infections. Antimicrob Agents Chemother. 1989 Nov;33(11):1864–1868. doi: 10.1128/aac.33.11.1864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartmann K., Donath A., Beer B., Egberink H. F., Horzinek M. C., Lutz H., Hoffmann-Fezer G., Thum I., Thefeld S. Use of two virustatica (AZT, PMEA) in the treatment of FIV and of FeLV seropositive cats with clinical symptoms. Vet Immunol Immunopathol. 1992 Dec;35(1-2):167–175. doi: 10.1016/0165-2427(92)90129-e. [DOI] [PubMed] [Google Scholar]
- Heijtink R. A., De Wilde G. A., Kruining J., Berk L., Balzarini J., De Clercq E., Holy A., Schalm S. W. Inhibitory effect of 9-(2-phosphonylmethoxyethyl)-adenine (PMEA) on human and duck hepatitis B virus infection. Antiviral Res. 1993 Jun;21(2):141–153. doi: 10.1016/0166-3542(93)90050-s. [DOI] [PubMed] [Google Scholar]
- Holý A., Votruba I., Merta A., Cerný J., Veselý J., Vlach J., Sedivá K., Rosenberg I., Otmar M., Hrebabecký H. Acyclic nucleotide analogues: synthesis, antiviral activity and inhibitory effects on some cellular and virus-encoded enzymes in vitro. Antiviral Res. 1990 Jun;13(6):295–311. doi: 10.1016/0166-3542(90)90014-x. [DOI] [PubMed] [Google Scholar]
- Hoover E. A., Ebner J. P., Zeidner N. S., Mullins J. I. Early therapy of feline leukemia virus infection (FeLV-FAIDS) with 9-(2-phosphonylmethoxyethyl)adenine (PMEA). Antiviral Res. 1991 Jul;16(1):77–92. doi: 10.1016/0166-3542(91)90060-5. [DOI] [PubMed] [Google Scholar]
- Maudgal P. C., De Clercq E. Efficacy of 9-(2-phosphonylmethoxyethyl)adenine in the therapy of TK+ and TK- herpes simplex virus experimental keratitis. Curr Eye Res. 1991;10 (Suppl):139–142. doi: 10.3109/02713689109020370. [DOI] [PubMed] [Google Scholar]
- Merta A., Votruba I., Jindrich J., Holý A., Cihlár T., Rosenberg I., Otmar M., Herve T. Y. Phosphorylation of 9-(2-phosphonomethoxyethyl)adenine and 9-(S)-(3-hydroxy-2-phosphonomethoxypropyl)adenine by AMP(dAMP) kinase from L1210 cells. Biochem Pharmacol. 1992 Nov 17;44(10):2067–2077. doi: 10.1016/0006-2952(92)90110-5. [DOI] [PubMed] [Google Scholar]
- Moore M. R., Hamzeh F. M., Lee F. E., Lietman P. S. Activity of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl) cytosine against human cytomegalovirus when administered as single-bolus dose and continuous infusion in in vitro cell culture perfusion system. Antimicrob Agents Chemother. 1994 Oct;38(10):2404–2408. doi: 10.1128/aac.38.10.2404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naesens L., Balzarini J., De Clercq E. Acyclic adenine nucleoside phosphonates in plasma determined by high-performance liquid chromatography with fluorescence detection. Clin Chem. 1992 Apr;38(4):480–485. [PubMed] [Google Scholar]
- Naesens L., Balzarini J., De Clercq E. Pharmacokinetics in mice of the anti-retrovirus agent 9-(2-phosphonylmethoxyethyl)adenine. Drug Metab Dispos. 1992 Sep-Oct;20(5):747–752. [PubMed] [Google Scholar]
- Naesens L., Balzarini J., De Clercq E. Single-dose administration of 9-(2-phosphonylmethoxyethyl)adenine (PMEA) and 9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP) in the prophylaxis of retrovirus infection in vivo. Antiviral Res. 1991 Jul;16(1):53–64. doi: 10.1016/0166-3542(91)90058-y. [DOI] [PubMed] [Google Scholar]
- Naesens L., Neyts J., Balzarini J., Holy A., Rosenberg I., De Clercq E. Efficacy of oral 9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP) in the treatment of retrovirus and cytomegalovirus infections in mice. J Med Virol. 1993 Feb;39(2):167–172. doi: 10.1002/jmv.1890390215. [DOI] [PubMed] [Google Scholar]
- Palú G., Stefanelli S., Rassu M., Parolin C., Balzarini J., De Clercq E. Cellular uptake of phosphonylmethoxyalkylpurine derivatives. Antiviral Res. 1991 Jul;16(1):115–119. doi: 10.1016/0166-3542(91)90063-w. [DOI] [PubMed] [Google Scholar]
- Pauwels R., Balzarini J., Schols D., Baba M., Desmyter J., Rosenberg I., Holy A., De Clercq E. Phosphonylmethoxyethyl purine derivatives, a new class of anti-human immunodeficiency virus agents. Antimicrob Agents Chemother. 1988 Jul;32(7):1025–1030. doi: 10.1128/aac.32.7.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell J. W., Marrero D., Whiterock V. J., Klunk L. J., Starrett J. E. Determination of 9-[(2-phosphonylmethoxy)ethyl]adenine in rat urine by high-performance liquid chromatography with fluorescence detection. J Chromatogr. 1991 Dec 6;572(1-2):321–326. doi: 10.1016/0378-4347(91)80498-2. [DOI] [PubMed] [Google Scholar]
- Srinivas R. V., Robbins B. L., Connelly M. C., Gong Y. F., Bischofberger N., Fridland A. Metabolism and in vitro antiretroviral activities of bis(pivaloyloxymethyl) prodrugs of acyclic nucleoside phosphonates. Antimicrob Agents Chemother. 1993 Oct;37(10):2247–2250. doi: 10.1128/aac.37.10.2247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Starrett J. E., Jr, Tortolani D. R., Hitchcock M. J., Martin J. C., Mansuri M. M. Synthesis and in vitro evaluation of a phosphonate prodrug: bis(pivaloyloxymethyl) 9-(2-phosphonylmethoxyethyl)adenine. Antiviral Res. 1992 Sep;19(3):267–273. doi: 10.1016/0166-3542(92)90084-i. [DOI] [PubMed] [Google Scholar]
- Starrett J. E., Jr, Tortolani D. R., Russell J., Hitchcock M. J., Whiterock V., Martin J. C., Mansuri M. M. Synthesis, oral bioavailability determination, and in vitro evaluation of prodrugs of the antiviral agent 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). J Med Chem. 1994 Jun 10;37(12):1857–1864. doi: 10.1021/jm00038a015. [DOI] [PubMed] [Google Scholar]
- Tsai C. C., Follis K. E., Grant R., Sabo A., Nolte R., Bartz C., Bischofberger N., Benveniste R. Comparison of the efficacy of AZT and PMEA treatment against acute SIVmne infection in macaques. J Med Primatol. 1994 Feb-May;23(2-3):175–183. doi: 10.1111/j.1600-0684.1994.tb00119.x. [DOI] [PubMed] [Google Scholar]
- Tsai C. C., Follis K. E., Sabo A., Grant R. F., Bartz C., Nolte R. E., Benveniste R. E., Bischofberger N. Preexposure prophylaxis with 9-(2-phosphonylmethoxyethyl)adenine against simian immunodeficiency virus infection in macaques. J Infect Dis. 1994 Feb;169(2):260–266. doi: 10.1093/infdis/169.2.260. [DOI] [PubMed] [Google Scholar]
- Votruba I., Trávnícek M., Rosenberg I., Otmar M., Merta A., Hrebabecký H., Holý A. Inhibition of avian myeloblastosis virus reverse transcriptase by diphosphates of acyclic phosphonylmethyl nucleotide analogues. Antiviral Res. 1990 Jun;13(6):287–293. doi: 10.1016/0166-3542(90)90013-w. [DOI] [PubMed] [Google Scholar]
- Yokota T., Mochizuki S., Konno K., Mori S., Shigeta S., De Clercq E. Inhibitory effects of selected antiviral compounds on human hepatitis B virus DNA synthesis. Antimicrob Agents Chemother. 1991 Feb;35(2):394–397. doi: 10.1128/aac.35.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]