Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1996 Jan;40(1):40–46. doi: 10.1128/aac.40.1.40

Generation and characterization of variants of NWS/G70C influenza virus after in vitro passage in 4-amino-Neu5Ac2en and 4-guanidino-Neu5Ac2en.

J L McKimm-Breschkin 1, T J Blick 1, A Sahasrabudhe 1, T Tiong 1, D Marshall 1, G J Hart 1, R C Bethell 1, C R Penn 1
PMCID: PMC163053  PMID: 8787876

Abstract

The compounds 4-amino-Neu5Ac2en (5-acetylamino-2,6-anhydro-4-amino-3,4,5- trideoxy-D-glycerol-D-galacto-non-2-enoic acid) and 4-guanidino-Neu5Ac2en (5-acetylamino-2,6-anhydro-4-guanidino-3,4,5- trideoxy-D-glycerol-D-galacto-non-2-enoic acid), which selectively inhibit the influenza virus neuraminidase, have been tested in vitro for their ability to generate drug-resistant variants. NWS/G70C virus (H1N9) was cultured in each drug by limiting-dilution passaging. After five or six passages in either compound, there emerged viruses which had a reduced sensitivity to the inhibitors in cell culture. Variant viruses were up to 1,000-fold less sensitive in plaque assays, liquid culture, and a hemagglutination-elution assay. In addition, cross-resistance to both compounds was seen in all three assays. Some isolates demonstrated drug dependence with an increase in both size and number of plaques in a plaque assay and an increase in virus yield in liquid culture in the presence of inhibitors. No significant difference in neuraminidase enzyme activity was detected in vitro, and no sequence changes in the conserved sites of the neuraminidase were found. However, changes in conserved amino acids in the hemagglutinin were detected. These amino acids were associated with either the hemagglutinin receptor binding site, Thr-155, or the left edge of the receptor binding pocket, Val-223 and Arg-229. Hence, mutations at these sites could be expected to affect the affinity or specificity of the hemagglutinin binding. Compensating mutations resulting in a weakly binding hemagglutinin thus seem to be circumventing the inhibition of the neuraminidase by allowing the virus to be released from cells with less dependence on the neuraminidase.

Full Text

The Full Text of this article is available as a PDF (576.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anders E. M., Scalzo A. A., Rogers G. N., White D. O. Relationship between mitogenic activity of influenza viruses and the receptor-binding specificity of their hemagglutinin molecules. J Virol. 1986 Nov;60(2):476–482. doi: 10.1128/jvi.60.2.476-482.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker A. T., Varghese J. N., Laver W. G., Air G. M., Colman P. M. Three-dimensional structure of neuraminidase of subtype N9 from an avian influenza virus. Proteins. 1987;2(2):111–117. doi: 10.1002/prot.340020205. [DOI] [PubMed] [Google Scholar]
  3. Bean W. J., Threlkeld S. C., Webster R. G. Biologic potential of amantadine-resistant influenza A virus in an avian model. J Infect Dis. 1989 Jun;159(6):1050–1056. doi: 10.1093/infdis/159.6.1050. [DOI] [PubMed] [Google Scholar]
  4. Burmeister W. P., Ruigrok R. W., Cusack S. The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J. 1992 Jan;11(1):49–56. doi: 10.1002/j.1460-2075.1992.tb05026.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daniels P. S., Jeffries S., Yates P., Schild G. C., Rogers G. N., Paulson J. C., Wharton S. A., Douglas A. R., Skehel J. J., Wiley D. C. The receptor-binding and membrane-fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies. EMBO J. 1987 May;6(5):1459–1465. doi: 10.1002/j.1460-2075.1987.tb02387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grambas S., Bennett M. S., Hay A. J. Influence of amantadine resistance mutations on the pH regulatory function of the M2 protein of influenza A viruses. Virology. 1992 Dec;191(2):541–549. doi: 10.1016/0042-6822(92)90229-i. [DOI] [PubMed] [Google Scholar]
  8. Hart G. J., Bethell R. C. 2,3-didehydro-2,4-dideoxy-4-guanidino-N-acetyl-D-neuraminic acid (4-guanidino-Neu5Ac2en) is a slow-binding inhibitor of sialidase from both influenza A virus and influenza B virus. Biochem Mol Biol Int. 1995 Jul;36(4):695–703. [PubMed] [Google Scholar]
  9. Hay A. J., Wolstenholme A. J., Skehel J. J., Smith M. H. The molecular basis of the specific anti-influenza action of amantadine. EMBO J. 1985 Nov;4(11):3021–3024. doi: 10.1002/j.1460-2075.1985.tb04038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hayden F. G., Sperber S. J., Belshe R. B., Clover R. D., Hay A. J., Pyke S. Recovery of drug-resistant influenza A virus during therapeutic use of rimantadine. Antimicrob Agents Chemother. 1991 Sep;35(9):1741–1747. doi: 10.1128/aac.35.9.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Higa H. H., Rogers G. N., Paulson J. C. Influenza virus hemagglutinins differentiate between receptor determinants bearing N-acetyl-, N-glycollyl-, and N,O-diacetylneuraminic acids. Virology. 1985 Jul 15;144(1):279–282. doi: 10.1016/0042-6822(85)90325-3. [DOI] [PubMed] [Google Scholar]
  12. Kendal A. P., Klenk H. D. Amantadine inhibits an early, M2 protein-dependent event in the replication cycle of avian influenza (H7) viruses. Arch Virol. 1991;119(3-4):265–273. doi: 10.1007/BF01310675. [DOI] [PubMed] [Google Scholar]
  13. Liu C., Air G. M. Selection and characterization of a neuraminidase-minus mutant of influenza virus and its rescue by cloned neuraminidase genes. Virology. 1993 May;194(1):403–407. doi: 10.1006/viro.1993.1276. [DOI] [PubMed] [Google Scholar]
  14. Mast E. E., Harmon M. W., Gravenstein S., Wu S. P., Arden N. H., Circo R., Tyszka G., Kendal A. P., Davis J. P. Emergence and possible transmission of amantadine-resistant viruses during nursing home outbreaks of influenza A (H3N2). Am J Epidemiol. 1991 Nov 1;134(9):988–997. doi: 10.1093/oxfordjournals.aje.a116184. [DOI] [PubMed] [Google Scholar]
  15. McKimm-Breschkin J. L. The use of tetramethylbenzidine for solid phase immunoassays. J Immunol Methods. 1990 Dec 31;135(1-2):277–280. doi: 10.1016/0022-1759(90)90282-z. [DOI] [PubMed] [Google Scholar]
  16. Morrison J. F., Walsh C. T. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol. 1988;61:201–301. doi: 10.1002/9780470123072.ch5. [DOI] [PubMed] [Google Scholar]
  17. Nobusawa E., Aoyama T., Kato H., Suzuki Y., Tateno Y., Nakajima K. Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology. 1991 Jun;182(2):475–485. doi: 10.1016/0042-6822(91)90588-3. [DOI] [PubMed] [Google Scholar]
  18. Palese P., Compans R. W. Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA): mechanism of action. J Gen Virol. 1976 Oct;33(1):159–163. doi: 10.1099/0022-1317-33-1-159. [DOI] [PubMed] [Google Scholar]
  19. Potier M., Mameli L., Bélisle M., Dallaire L., Melançon S. B. Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal Biochem. 1979 Apr 15;94(2):287–296. doi: 10.1016/0003-2697(79)90362-2. [DOI] [PubMed] [Google Scholar]
  20. Rogers G. N., Paulson J. C., Daniels R. S., Skehel J. J., Wilson I. A., Wiley D. C. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature. 1983 Jul 7;304(5921):76–78. doi: 10.1038/304076a0. [DOI] [PubMed] [Google Scholar]
  21. Tulip W. R., Varghese J. N., Baker A. T., van Donkelaar A., Laver W. G., Webster R. G., Colman P. M. Refined atomic structures of N9 subtype influenza virus neuraminidase and escape mutants. J Mol Biol. 1991 Sep 20;221(2):487–497. doi: 10.1016/0022-2836(91)80069-7. [DOI] [PubMed] [Google Scholar]
  22. Varghese J. N., McKimm-Breschkin J. L., Caldwell J. B., Kortt A. A., Colman P. M. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins. 1992 Nov;14(3):327–332. doi: 10.1002/prot.340140302. [DOI] [PubMed] [Google Scholar]
  23. Weis W., Brown J. H., Cusack S., Paulson J. C., Skehel J. J., Wiley D. C. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988 Jun 2;333(6172):426–431. doi: 10.1038/333426a0. [DOI] [PubMed] [Google Scholar]
  24. Woods J. M., Bethell R. C., Coates J. A., Healy N., Hiscox S. A., Pearson B. A., Ryan D. M., Ticehurst J., Tilling J., Walcott S. M. 4-Guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid is a highly effective inhibitor both of the sialidase (neuraminidase) and of growth of a wide range of influenza A and B viruses in vitro. Antimicrob Agents Chemother. 1993 Jul;37(7):1473–1479. doi: 10.1128/aac.37.7.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. von Itzstein M., Wu W. Y., Kok G. B., Pegg M. S., Dyason J. C., Jin B., Van Phan T., Smythe M. L., White H. F., Oliver S. W. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature. 1993 Jun 3;363(6428):418–423. doi: 10.1038/363418a0. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES