Abstract
As a consequence of their bactericidal actions, many antibiotics cause the release of endotoxin, a primary mediator of gram-negative sepsis. Bactericidal/permeability-increasing protein (BPI) has bactericidal activity and neutralizes endotoxin in vitro and in vivo. We sought to examine the effect of a recombinant N-terminal fragment of BPI (rBPI21) in conjunction with cefamandole, a cephalosporin antibiotic, in the treatment of Escherichia coli bacteremia and septic shock in rabbits. Cefamandole (100 mg/kg of body weight) was injected intravenously. This was followed by simultaneous 10-min infusions of E. coli O7:K1 (9 x 10(9) CFU/kg) and rBPI21 (10 mg/kg). rBPI21 was continuously infused for an additional 110 min at 10 mg/kg/h. The administration of rBPI21 in conjunction with the administration of cefamandole prevented the cefamandole-induced increase of free endotoxin in plasma, accelerated bacterial clearance, ameliorated cardiopulmonary dysfunction, and thereby, prevented death, whereas neither agent alone was protective in this animal model. The efficacy of the combined treatment with rBPI21 and cefamandole suggests a synergistic interaction between the two agents. The data indicate that rBPI21 may be useful in conjunction with traditional antibiotic therapy.
Full Text
The Full Text of this article is available as a PDF (226.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ammons W. S., Kohn F. R., Kung A. H. Protective effects of an N-terminal fragment of bactericidal/permeability-increasing protein in rodent models of gram-negative sepsis: role of bactericidal properties. J Infect Dis. 1994 Dec;170(6):1473–1482. doi: 10.1093/infdis/170.6.1473. [DOI] [PubMed] [Google Scholar]
- Bone R. C. Gram-negative sepsis: a dilemma of modern medicine. Clin Microbiol Rev. 1993 Jan;6(1):57–68. doi: 10.1128/cmr.6.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen J., McConnell J. S. Release of endotoxin from bacteria exposed to ciprofloxacin and its prevention with polymyxin B. Eur J Clin Microbiol. 1986 Feb;5(1):13–17. doi: 10.1007/BF02013454. [DOI] [PubMed] [Google Scholar]
- Dofferhoff A. S., Nijland J. H., de Vries-Hospers H. G., Mulder P. O., Weits J., Bom V. J. Effects of different types and combinations of antimicrobial agents on endotoxin release from gram-negative bacteria: an in-vitro and in-vivo study. Scand J Infect Dis. 1991;23(6):745–754. doi: 10.3109/00365549109024303. [DOI] [PubMed] [Google Scholar]
- Duma R. J. Gram-negative bacillary infections. Pathogenic and pathophysiologic correlates. Am J Med. 1985 Jun 7;78(6A):154–164. doi: 10.1016/0002-9343(85)90119-6. [DOI] [PubMed] [Google Scholar]
- Fein A. M., Lippmann M., Holtzman H., Eliraz A., Goldberg S. K. The risk factors, incidence, and prognosis of ARDS following septicemia. Chest. 1983 Jan;83(1):40–42. doi: 10.1378/chest.83.1.40. [DOI] [PubMed] [Google Scholar]
- Flynn P. M., Shenep J. L., Stokes D. C., Fairclough D., Hildner W. K. Polymyxin B moderates acidosis and hypotension in established, experimental gram-negative septicemia. J Infect Dis. 1987 Nov;156(5):706–712. doi: 10.1093/infdis/156.5.706. [DOI] [PubMed] [Google Scholar]
- Gazzano-Santoro H., Mészáros K., Birr C., Carroll S. F., Theofan G., Horwitz A. H., Lim E., Aberle S., Kasler H., Parent J. B. Competition between rBPI23, a recombinant fragment of bactericidal/permeability-increasing protein, and lipopolysaccharide (LPS)-binding protein for binding to LPS and gram-negative bacteria. Infect Immun. 1994 Apr;62(4):1185–1191. doi: 10.1128/iai.62.4.1185-1191.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gazzano-Santoro H., Parent J. B., Grinna L., Horwitz A., Parsons T., Theofan G., Elsbach P., Weiss J., Conlon P. J. High-affinity binding of the bactericidal/permeability-increasing protein and a recombinant amino-terminal fragment to the lipid A region of lipopolysaccharide. Infect Immun. 1992 Nov;60(11):4754–4761. doi: 10.1128/iai.60.11.4754-4761.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopkin D. A. Frapper fort ou frapper doucement: a gram-negative dilemma. Lancet. 1978 Dec 2;2(8101):1193–1194. [PubMed] [Google Scholar]
- Huang K., Conlon P. J., Fishwild D. M. A recombinant amino-terminal fragment of bactericidal/permeability increasing protein (rBPI23) inhibits soluble CD14-mediated lipopolysaccharide-induced endothelial adherence for human neutrophils. Shock. 1994 Feb;1(2):81–86. doi: 10.1097/00024382-199402000-00001. [DOI] [PubMed] [Google Scholar]
- Kaplan R. L., Sahn S. A., Petty T. L. Incidence and outcome of the respiratory distress syndrome in gram-negative sepsis. Arch Intern Med. 1979 Aug;139(8):867–869. [PubMed] [Google Scholar]
- Kelly C. J., Cech A. C., Argenteanu M., Gallagher H., Shou J., Minnard E., Daly J. M. Role of bactericidal permeability-increasing protein in the treatment of gram-negative pneumonia. Surgery. 1993 Aug;114(2):140–146. [PubMed] [Google Scholar]
- Kohn F. R., Ammons W. S., Horwitz A., Grinna L., Theofan G., Weickmann J., Kung A. H. Protective effect of a recombinant amino-terminal fragment of bactericidal/permeability-increasing protein in experimental endotoxemia. J Infect Dis. 1993 Nov;168(5):1307–1310. doi: 10.1093/infdis/168.5.1307. [DOI] [PubMed] [Google Scholar]
- Kreger B. E., Craven D. E., McCabe W. R. Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med. 1980 Mar;68(3):344–355. doi: 10.1016/0002-9343(80)90102-3. [DOI] [PubMed] [Google Scholar]
- Kung A. H., Ammons W. S., Lin Y., Kohn F. R. Efficacy of a recombinant amino terminal fragment of bactericidal/permeability increasing protein in rodents challenged with LPS or E. coli bacteria. Prog Clin Biol Res. 1994;388:255–263. [PubMed] [Google Scholar]
- Lin Y., Ammons W. S., Leach W. J., Kung A. H. Protective effects of a recombinant N-terminal fragment of bactericidal/permeability increasing protein on endotoxic shock in conscious rabbits. Shock. 1994 Nov;2(5):324–331. doi: 10.1097/00024382-199411000-00005. [DOI] [PubMed] [Google Scholar]
- Lin Y., Kohn F. R., Kung A. H., Ammons W. S. Protective effect of a recombinant fragment of bactericidal/permeability increasing protein against carbohydrate dyshomeostasis and tumor necrosis factor-alpha elevation in rat endotoxemia. Biochem Pharmacol. 1994 Apr 29;47(9):1553–1559. doi: 10.1016/0006-2952(94)90531-2. [DOI] [PubMed] [Google Scholar]
- Mannion B. A., Weiss J., Elsbach P. Separation of sublethal and lethal effects of the bactericidal/permeability increasing protein on Escherichia coli. J Clin Invest. 1990 Mar;85(3):853–860. doi: 10.1172/JCI114512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marra M. N., Wilde C. G., Collins M. S., Snable J. L., Thornton M. B., Scott R. W. The role of bactericidal/permeability-increasing protein as a natural inhibitor of bacterial endotoxin. J Immunol. 1992 Jan 15;148(2):532–537. [PubMed] [Google Scholar]
- Marra M. N., Wilde C. G., Griffith J. E., Snable J. L., Scott R. W. Bactericidal/permeability-increasing protein has endotoxin-neutralizing activity. J Immunol. 1990 Jan 15;144(2):662–666. [PubMed] [Google Scholar]
- Mészáros K., Aberle S., Dedrick R., Machovich R., Horwitz A., Birr C., Theofan G., Parent J. B. Monocyte tissue factor induction by lipopolysaccharide (LPS): dependence on LPS-binding protein and CD14, and inhibition by a recombinant fragment of bactericidal/permeability-increasing protein. Blood. 1994 May 1;83(9):2516–2525. [PubMed] [Google Scholar]
- Mészáros K., Parent J. B., Gazzano-Santoro H., Little R., Horwitz A., Parsons T., Theofan G., Grinna L., Weickmann J., Elsbach P. A recombinant amino terminal fragment of bactericidal/permeability-increasing protein inhibits the induction of leukocyte responses by LPS. J Leukoc Biol. 1993 Dec;54(6):558–563. doi: 10.1002/jlb.54.6.558. [DOI] [PubMed] [Google Scholar]
- Ooi C. E., Weiss J., Doerfler M. E., Elsbach P. Endotoxin-neutralizing properties of the 25 kD N-terminal fragment and a newly isolated 30 kD C-terminal fragment of the 55-60 kD bactericidal/permeability-increasing protein of human neutrophils. J Exp Med. 1991 Sep 1;174(3):649–655. doi: 10.1084/jem.174.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ooi C. E., Weiss J., Elsbach P., Frangione B., Mannion B. A 25-kDa NH2-terminal fragment carries all the antibacterial activities of the human neutrophil 60-kDa bactericidal/permeability-increasing protein. J Biol Chem. 1987 Nov 5;262(31):14891–14894. [PubMed] [Google Scholar]
- Parrillo J. E. The cardiovascular pathophysiology of sepsis. Annu Rev Med. 1989;40:469–485. doi: 10.1146/annurev.me.40.020189.002345. [DOI] [PubMed] [Google Scholar]
- Prins J. M., van Deventer S. J., Kuijper E. J., Speelman P. Clinical relevance of antibiotic-induced endotoxin release. Antimicrob Agents Chemother. 1994 Jun;38(6):1211–1218. doi: 10.1128/aac.38.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Røkke O., Revhaug A., Osterud B., Giercksky K. E. Increased plasma levels of endotoxin and corresponding changes in circulatory performance in a porcine sepsis model: the effect of antibiotic administration. Prog Clin Biol Res. 1988;272:247–262. [PubMed] [Google Scholar]
- Saladino R., Garcia C., Thompson C., Hammer B., Parsonnet J., Novitsky T., Siber G., Fleisher G. Efficacy of a recombinant endotoxin neutralizing protein in rabbits with Escherichia coli sepsis. Circ Shock. 1994 Feb;42(2):104–110. [PubMed] [Google Scholar]
- Shenep J. L., Barton R. P., Mogan K. A. Role of antibiotic class in the rate of liberation of endotoxin during therapy for experimental gram-negative bacterial sepsis. J Infect Dis. 1985 Jun;151(6):1012–1018. doi: 10.1093/infdis/151.6.1012. [DOI] [PubMed] [Google Scholar]
- Shenep J. L., Flynn P. M., Barrett F. F., Stidham G. L., Westenkirchner D. F. Serial quantitation of endotoxemia and bacteremia during therapy for gram-negative bacterial sepsis. J Infect Dis. 1988 Mar;157(3):565–568. doi: 10.1093/infdis/157.3.565. [DOI] [PubMed] [Google Scholar]
- Shenep J. L., Mogan K. A. Kinetics of endotoxin release during antibiotic therapy for experimental gram-negative bacterial sepsis. J Infect Dis. 1984 Sep;150(3):380–388. doi: 10.1093/infdis/150.3.380. [DOI] [PubMed] [Google Scholar]
- Talan D. A. Recent developments in our understanding of sepsis: evaluation of anti-endotoxin antibodies and biological response modifiers. Ann Emerg Med. 1993 Dec;22(12):1871–1890. doi: 10.1016/s0196-0644(05)80417-2. [DOI] [PubMed] [Google Scholar]
- Tomasz A. Penicillin-binding proteins and the antibacterial effectiveness of beta-lactam antibiotics. Rev Infect Dis. 1986 Jul-Aug;8 (Suppl 3):S260–S278. doi: 10.1093/clinids/8.supplement_3.s260. [DOI] [PubMed] [Google Scholar]
- Täuber M. G., Shibl A. M., Hackbarth C. J., Larrick J. W., Sande M. A. Antibiotic therapy, endotoxin concentration in cerebrospinal fluid, and brain edema in experimental Escherichia coli meningitis in rabbits. J Infect Dis. 1987 Sep;156(3):456–462. doi: 10.1093/infdis/156.3.456. [DOI] [PubMed] [Google Scholar]
- Vandermeer T. J., Menconi M. J., O'Sullivan B. P., Larkin V. A., Wang H., Kradin R. L., Fink M. P. Bactericidal/permeability-increasing protein ameliorates acute lung injury in porcine endotoxemia. J Appl Physiol (1985) 1994 May;76(5):2006–2014. doi: 10.1152/jappl.1994.76.5.2006. [DOI] [PubMed] [Google Scholar]
- Weiss J., Elsbach P., Olsson I., Odeberg H. Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J Biol Chem. 1978 Apr 25;253(8):2664–2672. [PubMed] [Google Scholar]
- Weiss J., Elsbach P., Shu C., Castillo J., Grinna L., Horwitz A., Theofan G. Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria. J Clin Invest. 1992 Sep;90(3):1122–1130. doi: 10.1172/JCI115930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss J., Olsson I. Cellular and subcellular localization of the bactericidal/permeability-increasing protein of neutrophils. Blood. 1987 Feb;69(2):652–659. [PubMed] [Google Scholar]