Abstract
Optimal strategies for the prophylaxis and therapy of endocarditis caused by oxacillin-resistant, coagulase-negative staphylococci in patients with native or prosthetic valvular heart disease are not well defined. We compared the in vivo efficacies of ampicillin-sulbactam-based regimens with those of vancomycin-based oxacillin-resistant, beta-lactamase-producing coagulase-negative staphylococcal isolate (Staphylococcus haemolyticus SE220). Ampicillin-sulbactam (100 and 20 mg/kg of body weight, respectively, given intramuscularly in a two-dose regimen) was equivalent to vancomycin (30 mg/kg given intravenously in a two-dose regimen) in its prophylactic efficacy against the coagulase-negative staphylococcal strain (93 and 80%, respectively). The combination of ampicillin-sulbactam plus either rifampin or vancomycin did not enhance the prophylactic efficacy compared with that of ampicillin-sulbactam or vancomycin alone. In the therapy of established aortic valve endocarditis in rabbits caused by this same coagulase-negative staphylococcal strain, animals received 7-day ampicillin-sulbactam-based or vancomycin-based regimens with or without rifampin. All treatment regimens were effective at lowering intravegetation coagulase-negative staphylococcal densities and rendering vegetations culture negative compared with the coagulase-negative staphylococcal densities and vegetations of untreated controls, with ampicillin-sulbactam in combination with rifampin or vancomycin being the most active regimen. However, only the regimen of ampicillin-sulbactam in combination with vancomycin effectively prevented relapse of endocarditis posttherapy after a 5-day antibiotic-free period. For animals receiving rifampin-containing regimens, relapses of endocarditis were associated with the in vivo development of rifampin resistance among coagulase-negative staphylococcal isolates in the vegetation. Ampicillin-sulbactam was highly effective in the prevention of experimental endocarditis caused by a beta-lactamase-producing, oxacillin-resistant coagulase-negative staphylococcal strain. Ampicillin-sulbactam was also efficacious for the therapy of coagulase-negative staphylococcal endocarditis, especially when it was combined with vancomycin to prevent posttherapeutic relapses.
Full Text
The Full Text of this article is available as a PDF (192.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer G. L., Vishniavsky N., Stiver H. G. Plasmid pattern analysis of Staphylococcal epidermidis isolates from patients with prosthetic valve endocarditis. Infect Immun. 1982 Feb;35(2):627–632. doi: 10.1128/iai.35.2.627-632.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bayer A. S., Nelson R. J., Slama T. G. Current concepts in prevention of prosthetic valve endocarditis. Chest. 1990 May;97(5):1203–1207. doi: 10.1378/chest.97.5.1203. [DOI] [PubMed] [Google Scholar]
- Bayer A. S., Tu J. Chemoprophylactic efficacy against experimental endocarditis caused by beta-lactamase-producing, aminoglycoside-resistant enterococci is associated with prolonged serum inhibitory activity. Antimicrob Agents Chemother. 1990 Jun;34(6):1068–1074. doi: 10.1128/aac.34.6.1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berney P., Francioli P. Successful prophylaxis of experimental streptococcal endocarditis with single-dose amoxicillin administered after bacterial challenge. J Infect Dis. 1990 Feb;161(2):281–285. doi: 10.1093/infdis/161.2.281. [DOI] [PubMed] [Google Scholar]
- Calderwood S. B., Swinski L. A., Waternaux C. M., Karchmer A. W., Buckley M. J. Risk factors for the development of prosthetic valve endocarditis. Circulation. 1985 Jul;72(1):31–37. doi: 10.1161/01.cir.72.1.31. [DOI] [PubMed] [Google Scholar]
- Cantoni L., Wenger A., Glauser M. P., Bille J. Comparative efficacy of amoxicillin-clavulanate, cloxacillin, and vancomycin against methicillin-sensitive and methicillin-resistant Staphylococcus aureus endocarditis in rats. J Infect Dis. 1989 May;159(5):989–993. doi: 10.1093/infdis/159.5.989. [DOI] [PubMed] [Google Scholar]
- Carrizosa J., Kaye D. Antibiotic synergism in enterococcal endocarditis. J Lab Clin Med. 1976 Jul;88(1):132–141. [PubMed] [Google Scholar]
- Chambers H. F. Coagulase-negative staphylococci resistant to beta-lactam antibiotics in vivo produce penicillin-binding protein 2a. Antimicrob Agents Chemother. 1987 Dec;31(12):1919–1924. doi: 10.1128/aac.31.12.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chambers H. F., Kartalija M., Sande M. Ampicillin, sulbactam, and rifampin combination treatment of experimental methicillin-resistant Staphylococcus aureus endocarditis in rabbits. J Infect Dis. 1995 Apr;171(4):897–902. doi: 10.1093/infdis/171.4.897. [DOI] [PubMed] [Google Scholar]
- Chambers H. F., Sachdeva M. Binding of beta-lactam antibiotics to penicillin-binding proteins in methicillin-resistant Staphylococcus aureus. J Infect Dis. 1990 Jun;161(6):1170–1176. doi: 10.1093/infdis/161.6.1170. [DOI] [PubMed] [Google Scholar]
- Chambers H. F., Sachdeva M., Kennedy S. Binding affinity for penicillin-binding protein 2a correlates with in vivo activity of beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus. J Infect Dis. 1990 Sep;162(3):705–710. doi: 10.1093/infdis/162.3.705. [DOI] [PubMed] [Google Scholar]
- Crossley K., Loesch D., Landesman B., Mead K., Chern M., Strate R. An outbreak of infections caused by strains of Staphylococcus aureus resistant to methicillin and aminoglycosides. I. Clinical studies. J Infect Dis. 1979 Mar;139(3):273–279. doi: 10.1093/infdis/139.3.273. [DOI] [PubMed] [Google Scholar]
- Dajani A. S., Bisno A. L., Chung K. J., Durack D. T., Freed M., Gerber M. A., Karchmer A. W., Millard H. D., Rahimtoola S., Shulman S. T. Prevention of bacterial endocarditis. Recommendations by the American Heart Association. JAMA. 1990 Dec 12;264(22):2919–2922. [PubMed] [Google Scholar]
- Farr B., Mandell G. L. Rifampin. Med Clin North Am. 1982 Jan;66(1):157–168. doi: 10.1016/s0025-7125(16)31449-3. [DOI] [PubMed] [Google Scholar]
- Hackbarth C. J., Chambers H. F. Methicillin-resistant staphylococci: detection methods and treatment of infections. Antimicrob Agents Chemother. 1989 Jul;33(7):995–999. doi: 10.1128/aac.33.7.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Handwerger S., Perlman D. C., Altarac D., McAuliffe V. Concomitant high-level vancomycin and penicillin resistance in clinical isolates of enterococci. Clin Infect Dis. 1992 Mar;14(3):655–661. doi: 10.1093/clinids/14.3.655. [DOI] [PubMed] [Google Scholar]
- Hirano L., Bayer A. S. Beta-Lactam-beta-lactamase-inhibitor combinations are active in experimental endocarditis caused by beta-lactamase-producing oxacillin-resistant staphylococci. Antimicrob Agents Chemother. 1991 Apr;35(4):685–690. doi: 10.1128/aac.35.4.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kernodle D. S., Kaiser A. B. Efficacy of prophylaxis with beta-lactams and beta-lactam-beta-lactamase inhibitor combinations against wound infection by methicillin-resistant and borderline-susceptible Staphylococcus aureus in a guinea pig model. Antimicrob Agents Chemother. 1993 Apr;37(4):702–707. doi: 10.1128/aac.37.4.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leclercq R., Derlot E., Duval J., Courvalin P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med. 1988 Jul 21;319(3):157–161. doi: 10.1056/NEJM198807213190307. [DOI] [PubMed] [Google Scholar]
- Levine D. P., Fromm B. S., Reddy B. R. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann Intern Med. 1991 Nov 1;115(9):674–680. doi: 10.7326/0003-4819-115-9-674. [DOI] [PubMed] [Google Scholar]
- Massanari R. M., Pfaller M. A., Wakefield D. S., Hammons G. T., McNutt L. A., Woolson R. F., Helms C. M. Implications of acquired oxacillin resistance in the management and control of Staphylococcus aureus infections. J Infect Dis. 1988 Oct;158(4):702–709. doi: 10.1093/infdis/158.4.702. [DOI] [PubMed] [Google Scholar]
- O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanabria T. J., Alpert J. S., Goldberg R., Pape L. A., Cheeseman S. H. Increasing frequency of staphylococcal infective endocarditis. Experience at a university hospital, 1981 through 1988. Arch Intern Med. 1990 Jun;150(6):1305–1309. [PubMed] [Google Scholar]
- Sidebottom D. G., Freeman J., Platt R., Epstein M. F., Goldmann D. A. Fifteen-year experience with bloodstream isolates of coagulase-negative staphylococci in neonatal intensive care. J Clin Microbiol. 1988 Apr;26(4):713–718. doi: 10.1128/jcm.26.4.713-718.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sierra-Madero J. G., Knapp C., Karaffa C., Washington J. A. Role of beta-lactamase and different testing conditions in oxacillin-borderline-susceptible staphylococci. Antimicrob Agents Chemother. 1988 Dec;32(12):1754–1757. doi: 10.1128/aac.32.12.1754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thauvin-Eliopoulos C., Rice L. B., Eliopoulos G. M., Moellering R. C., Jr Efficacy of oxacillin and ampicillin-sulbactam combination in experimental endocarditis caused by beta-lactamase-hyperproducing Staphylococcus aureus. Antimicrob Agents Chemother. 1990 May;34(5):728–732. doi: 10.1128/aac.34.5.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward T. T., Winn R. E., Hartstein A. I., Sewell D. L. Observations relating to an inter-hospital outbreak of methicillin-resistant Staphylococcus aureus: role of antimicrobial therapy in infection control. Infect Control. 1981 Nov-Dec;2(6):453–459. doi: 10.1017/s0195941700055715. [DOI] [PubMed] [Google Scholar]